文章目录
深度学习Week21——学习DenseNet算法
一、前言
二、我的环境
三、学习DenseNet算法
四、代码复现
4.1 配置数据集
4.2 构建模型
五、模型应用与评估
5.1 编写训练函数
5.2 编写测试函数
5.3 训练模型
5.4 结果可视化
一、前言
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
由于进阶营的难度较大,一周的时间我们难以完成一期内容的深入学习与理解,为了更好的学习,我们本周只了解并研究 DenseNet与ResNet的区别,并学习pytorch代码。
二、我的环境
- 电脑系统:Windows 10
- 语言环境:Python 3.8.0
- 编译器:Pycharm2023.2.3
深度学习环境:Pytorch
显卡及显存:RTX 3060 8G
三、学习DenseNet算法
通过阅读K同学啊的代码以及DenseNe论文原文,我学习到DenseNe相比于之前学过的内容t提出了一个更激进的密集连接机制:即互相连接所有的层,具体来说就是每个层都会接受其前面所有层作为其额外的输入。
图1为标准的神经网络传播过程,图2为ResNet网络的残差连接机制,作为对比,图3为DenseNet的密集连接机制。可以看到,ResNet是每个层与前面的某层(一般是2~4层)短路连接在一起,连接方式是通过元素相加。而在DenseNet中,每个层都会与前面所有层在channel维度上连接(concat)在一起(即元素叠加),并作为下一层的输入。
图1.标准的神经网络传播过程
图2. ResNet网络的短路连接机制(其中+代表的是元素级相加操作)
图3 DenseNet网络的密集连接机制(其中c代表的是channel级连接操作)
通俗点来说,假设在一个团队工作,每个人(网络层)都有自己的任务(特征提取)。
- 在传统的网络中,成员A完成任务后,把结果交给成员B,B再交给C,以此类推。
- 而在ResNet网络中,成员A完成任务后,不仅把结果交给B,还留了一条快速通道给D(跨过了B和C)。这样,如果B和C做得不好,D仍然能直接使用A的结果,确保信息不丢失。
- 但是在DenseNet中,成员A不仅把结果交给B,还同时交给C、D、E等所有后续成员。这样,每个成员都可以直接利用前面所有成员的工作成果。
四、代码复现
4.1 配置数据集
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore") #忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data_dir = "/home/mw/input/data7619//bird_photos/bird_photos"data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[0] for path in data_paths]
print(classeNames)
['/home/mw/input/data7619/bird_photos/bird_photos/Bananaquit', '/home/mw/input/data7619/bird_photos/bird_photos/Black Throated Bushtiti', '/home/mw/input/data7619/bird_photos/bird_photos/Cockatoo', '/home/mw/input/data7619/bird_photos/bird_photos/Black Skimmer']
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
图片总数为: 565
数据增强
import torchvision.transforms as transforms
from torchvision import datasets# 这里我们运用上前面学习到的数据增强的方式
train_transforms = transforms.Compose([transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.RandomVerticalFlip(), # 随机垂直翻转transforms.RandomRotation(15), # 随机旋转图片,范围为-15度到15度transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
])test_transform = transforms.Compose([transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder("/home/mw/input/data7619//bird_photos/bird_photos", transform=train_transforms)
print(total_data.class_to_idx)
{'Bananaquit': 0, 'Black Skimmer': 1, 'Black Throated Bushtiti': 2, 'Cockatoo': 3}
划分训练集、测试集
# 按比例将数据集分割为训练集和测试集
train_size = int(0.8 * len(total_data)) # 计算训练集的大小,占总数据集的80%
test_size = len(total_data) - train_size # 计算测试集的大小,占总数据集的20%
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size]) # 随机分割数据集# 定义批量大小
batch_size = 16# 创建训练集的数据加载器
train_dl = torch.utils.data.DataLoader(train_dataset, # 训练集数据batch_size=batch_size, # 每个批次的大小为32shuffle=True, # 打乱数据num_workers=0 # 使用的工作线程数
)# 创建测试集的数据加载器
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=0
)for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape) print("Shape of y: ", y.shape, y.dtype) break
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
Shape of y: torch.Size([32]) torch.int64
4.2 构建模型
首先我们实现DenseLayer,实现高效的特征传递和重用
class _DenseLayer(nn.Sequential):"""Basic unit of DenseBlock (using bottleneck layer) """def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):super(_DenseLayer, self).__init__()self.add_module("norm1", nn.BatchNorm2d(num_input_features))self.add_module("relu1", nn.ReLU(inplace=True))self.add_module("conv1", nn.Conv2d(num_input_features, bn_size*growth_rate,kernel_size=1, stride=1, bias=False))self.add_module("norm2", nn.BatchNorm2d(bn_size*growth_rate))self.add_module("relu2", nn.ReLU(inplace=True))self.add_module("conv2", nn.Conv2d(bn_size*growth_rate, growth_rate,kernel_size=3, stride=1, padding=1, bias=False))self.drop_rate = drop_ratedef forward(self, x):new_features = super(_DenseLayer, self).forward(x)if self.drop_rate > 0:new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)return torch.cat([x, new_features], 1)
据此,实现DenseBlock模块,有多个DenseLayer,内部是密集连接方式(输入特征数线性增长):
class _DenseBlock(nn.Sequential):"""DenseBlock"""def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):super(_DenseBlock, self).__init__()for i in range(num_layers):layer = _DenseLayer(num_input_features+i*growth_rate, growth_rate, bn_size,drop_rate)self.add_module("denselayer%d" % (i+1,), layer)
然后,我们实现Transition层,它主要是一个卷积层和一个池化层:
class _Transition(nn.Sequential):"""Transition layer between two adjacent DenseBlock"""def __init__(self, num_input_feature, num_output_features):super(_Transition, self).__init__()self.add_module("norm", nn.BatchNorm2d(num_input_feature))self.add_module("relu", nn.ReLU(inplace=True))self.add_module("conv", nn.Conv2d(num_input_feature, num_output_features,kernel_size=1, stride=1, bias=False))self.add_module("pool", nn.AvgPool2d(2, stride=2))
接下来我们实现DenseNet网络:
class DenseNet(nn.Module):"DenseNet-BC model"def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):""":param growth_rate: (int) number of filters used in DenseLayer, `k` in the paper:param block_config: (list of 4 ints) number of layers in each DenseBlock:param num_init_features: (int) number of filters in the first Conv2d:param bn_size: (int) the factor using in the bottleneck layer:param compression_rate: (float) the compression rate used in Transition Layer:param drop_rate: (float) the drop rate after each DenseLayer:param num_classes: (int) number of classes for classification"""super(DenseNet, self).__init__()# first Conv2dself.features = nn.Sequential(OrderedDict([("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),("norm0", nn.BatchNorm2d(num_init_features)),("relu0", nn.ReLU(inplace=True)),("pool0", nn.MaxPool2d(3, stride=2, padding=1))]))# DenseBlocknum_features = num_init_featuresfor i, num_layers in enumerate(block_config):block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)self.features.add_module("denseblock%d" % (i + 1), block)num_features += num_layers*growth_rateif i != len(block_config) - 1:transition = _Transition(num_features, int(num_features*compression_rate))self.features.add_module("transition%d" % (i + 1), transition)num_features = int(num_features * compression_rate)# final bn+ReLUself.features.add_module("norm5", nn.BatchNorm2d(num_features))self.features.add_module("relu5", nn.ReLU(inplace=True))# classification layerself.classifier = nn.Linear(num_features, num_classes)# params initializationfor m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)def forward(self, x):features = self.features(x)out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)out = self.classifier(out)return out
实现DenseNet-121网络,而且Pytorch提供了预训练好的网络参数:
def densenet121(pretrained=False, **kwargs):"""DenseNet121"""model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),**kwargs)if pretrained:# '.'s are no longer allowed in module names, but pervious _DenseLayer# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.# They are also in the checkpoints in model_urls. This pattern is used# to find such keys.pattern = re.compile(r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')state_dict = model_zoo.load_url(model_urls['densenet121'])for key in list(state_dict.keys()):res = pattern.match(key)if res:new_key = res.group(1) + res.group(2)state_dict[new_key] = state_dict[key]del state_dict[key]model.load_state_dict(state_dict)return model
from collections import OrderedDict
model = densenet121(num_classes=1000).to(device)
print(model)
DenseNet((features): Sequential((conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)(norm0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu0): ReLU(inplace=True)(pool0): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(denseblock1): _DenseBlock((denselayer1): _DenseLayer((norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer2): _DenseLayer((norm1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(96, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer3): _DenseLayer((norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer4): _DenseLayer((norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer5): _DenseLayer((norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer6): _DenseLayer((norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)))(transition1): _Transition((norm): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(pool): AvgPool2d(kernel_size=2, stride=2, padding=0))(denseblock2): _DenseBlock((denselayer1): _DenseLayer((norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer2): _DenseLayer((norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer3): _DenseLayer((norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer4): _DenseLayer((norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer5): _DenseLayer((norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer6): _DenseLayer((norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer7): _DenseLayer((norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer8): _DenseLayer((norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer9): _DenseLayer((norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer10): _DenseLayer((norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer11): _DenseLayer((norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer12): _DenseLayer((norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)))(transition2): _Transition((norm): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(pool): AvgPool2d(kernel_size=2, stride=2, padding=0))(denseblock3): _DenseBlock((denselayer1): _DenseLayer((norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer2): _DenseLayer((norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer3): _DenseLayer((norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer4): _DenseLayer((norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer5): _DenseLayer((norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer6): _DenseLayer((norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer7): _DenseLayer((norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer8): _DenseLayer((norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer9): _DenseLayer((norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer10): _DenseLayer((norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer11): _DenseLayer((norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer12): _DenseLayer((norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer13): _DenseLayer((norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer14): _DenseLayer((norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer15): _DenseLayer((norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer16): _DenseLayer((norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer17): _DenseLayer((norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer18): _DenseLayer((norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer19): _DenseLayer((norm1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer20): _DenseLayer((norm1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(864, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer21): _DenseLayer((norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer22): _DenseLayer((norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer23): _DenseLayer((norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer24): _DenseLayer((norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)))(transition3): _Transition((norm): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(pool): AvgPool2d(kernel_size=2, stride=2, padding=0))(denseblock4): _DenseBlock((denselayer1): _DenseLayer((norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer2): _DenseLayer((norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer3): _DenseLayer((norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer4): _DenseLayer((norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer5): _DenseLayer((norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer6): _DenseLayer((norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer7): _DenseLayer((norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer8): _DenseLayer((norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer9): _DenseLayer((norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer10): _DenseLayer((norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer11): _DenseLayer((norm1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer12): _DenseLayer((norm1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(864, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer13): _DenseLayer((norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer14): _DenseLayer((norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer15): _DenseLayer((norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False))(denselayer16): _DenseLayer((norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu1): ReLU(inplace=True)(conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu2): ReLU(inplace=True)(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)))(norm5): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu5): ReLU(inplace=True))(classifier): Linear(in_features=1024, out_features=1000, bias=True)
)
五 、模型应用与评估
5.1 编写训练函数
def train(dataloader, model, loss_fn, optimizer):model.train()train_loss, train_acc = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)loss = loss_fn(pred, y)# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= len(dataloader.dataset)train_loss /= len(dataloader)return train_acc, train_loss
5.2 编写测试函数
def test(dataloader, model, loss_fn):model.eval()test_loss, test_acc = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= len(dataloader.dataset)test_loss /= len(dataloader)return test_acc, test_loss
5.3 训练模型
# 定义损失函数和优化器
loss_fn = nn.CrossEntropyLoss()
learn_rate = 1e-4
opt = optim.Adam(model.parameters(), lr=learn_rate)epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0# 开始训练
for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, opt, loss_fn, device)# 清理缓存以释放显存torch.cuda.empty_cache()model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn, device)if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)lr = opt.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,epoch_test_acc * 100, epoch_test_loss, lr))
print('Done')
Epoch: 1, Train_acc:52.2%, Train_loss:5.147, Test_acc:58.4%, Test_loss:3.211, Lr:1.00E-04
Epoch: 2, Train_acc:69.2%, Train_loss:2.282, Test_acc:80.5%, Test_loss:1.687, Lr:1.00E-04
Epoch: 3, Train_acc:77.2%, Train_loss:1.095, Test_acc:77.9%, Test_loss:0.827, Lr:1.00E-04
Epoch: 4, Train_acc:83.2%, Train_loss:0.728, Test_acc:84.1%, Test_loss:0.599, Lr:1.00E-04
Epoch: 5, Train_acc:82.3%, Train_loss:0.583, Test_acc:88.5%, Test_loss:0.442, Lr:1.00E-04
Epoch: 6, Train_acc:85.4%, Train_loss:0.486, Test_acc:80.5%, Test_loss:0.461, Lr:1.00E-04
Epoch: 7, Train_acc:86.9%, Train_loss:0.492, Test_acc:87.6%, Test_loss:0.399, Lr:1.00E-04
Epoch: 8, Train_acc:86.9%, Train_loss:0.432, Test_acc:90.3%, Test_loss:0.298, Lr:1.00E-04
Epoch: 9, Train_acc:87.4%, Train_loss:0.384, Test_acc:89.4%, Test_loss:0.346, Lr:1.00E-04
Epoch:10, Train_acc:89.4%, Train_loss:0.336, Test_acc:89.4%, Test_loss:0.284, Lr:1.00E-04
Epoch:11, Train_acc:90.0%, Train_loss:0.361, Test_acc:87.6%, Test_loss:0.277, Lr:1.00E-04
Epoch:12, Train_acc:90.0%, Train_loss:0.298, Test_acc:88.5%, Test_loss:0.395, Lr:1.00E-04
Epoch:13, Train_acc:93.8%, Train_loss:0.209, Test_acc:85.8%, Test_loss:0.540, Lr:1.00E-04
Epoch:14, Train_acc:93.1%, Train_loss:0.212, Test_acc:89.4%, Test_loss:0.266, Lr:1.00E-04
Epoch:15, Train_acc:93.1%, Train_loss:0.243, Test_acc:91.2%, Test_loss:0.185, Lr:1.00E-04
Epoch:16, Train_acc:93.8%, Train_loss:0.224, Test_acc:89.4%, Test_loss:0.450, Lr:1.00E-04
Epoch:17, Train_acc:91.4%, Train_loss:0.232, Test_acc:92.0%, Test_loss:0.275, Lr:1.00E-04
Epoch:18, Train_acc:91.4%, Train_loss:0.320, Test_acc:92.0%, Test_loss:0.193, Lr:1.00E-04
Epoch:19, Train_acc:92.5%, Train_loss:0.289, Test_acc:92.9%, Test_loss:0.242, Lr:1.00E-04
Epoch:20, Train_acc:96.7%, Train_loss:0.148, Test_acc:92.0%, Test_loss:0.232, Lr:1.00E-04
Epoch:21, Train_acc:97.1%, Train_loss:0.145, Test_acc:92.9%, Test_loss:0.202, Lr:1.00E-04
Epoch:22, Train_acc:90.9%, Train_loss:0.274, Test_acc:87.6%, Test_loss:0.265, Lr:1.00E-04
Epoch:23, Train_acc:94.5%, Train_loss:0.168, Test_acc:93.8%, Test_loss:0.211, Lr:1.00E-04
Epoch:24, Train_acc:95.4%, Train_loss:0.162, Test_acc:92.0%, Test_loss:0.203, Lr:1.00E-04
Epoch:25, Train_acc:95.8%, Train_loss:0.150, Test_acc:86.7%, Test_loss:0.365, Lr:1.00E-04
Epoch:26, Train_acc:95.6%, Train_loss:0.149, Test_acc:93.8%, Test_loss:0.226, Lr:1.00E-04
Epoch:27, Train_acc:92.3%, Train_loss:0.211, Test_acc:87.6%, Test_loss:0.379, Lr:1.00E-04
Epoch:28, Train_acc:97.1%, Train_loss:0.133, Test_acc:92.0%, Test_loss:0.191, Lr:1.00E-04
Epoch:29, Train_acc:95.8%, Train_loss:0.129, Test_acc:92.0%, Test_loss:0.250, Lr:1.00E-04
Epoch:30, Train_acc:98.7%, Train_loss:0.084, Test_acc:91.2%, Test_loss:0.184, Lr:1.00E-04
Done
5.4 结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()