Python --Pandas库基础方法(2)

文章目录

    • Pandas
  • 变量类型的转换
    • 查看各列数据类型
    • 改变数据类型
  • 重置索引
  • 删除行
  • 索引和切片
    • series
    • DataFrame
      • 取列
      • 按行列索引选择
      • loc与iloc获取
  • isin()选择
  • query()的使用
  • 排序
    • 用索引排序
    • 使用变量值排序
  • 修改替换变量值
    • 对应数值的替换
  • 数据分组
    • 基于拆分进行筛选
  • 分组汇总
    • 引用自定义函数
  • 处理缺失值
    • 认识缺失值
    • 缺失值查看
    • 获取所有缺失值
    • 填充缺失值
  • 数据查重
    • 标识出重复的行
    • 直接删除重复的行
  • 总结

Pandas

Pandas 是 Python 中一个非常强大的数据处理库,它提供了快速、灵活和表达式丰富的数据结构,旨在使“关系”或“标签”数据的处理工作变得既简单又直观。Pandas 非常适合于数据清洗和准备阶段,以便进行进一步的分析和建模。

这篇我们接着来介绍Pandas方法:

变量类型的转换

Pandas支持的数据类型:

float、int、string、bool、datetime64[nsr]、datetime64[nsr,tz]、timedelta[ns]、category以及object。

查看各列数据类型

#查看各列数据类型book_df.dtypes
----------------------
ID         int64
name      object
age        int64
gender    object
clazz     object
dtype: 	  object

改变数据类型

格式:

df.astype(dtype :指定希望转换的数据类型,可以使用 numpy 或者 python 中的数据类型: int/float/bool/strcopy = True :是否生成新的副本,而不是替换原数据框errors = 'raise' : 转换出错时是否抛出错误,raise/ ignore )
# 改变数据类型book_df['age'].astype("float")
----------------------------------
0      22.0
1      24.0
2      22.0
3      24.0
4      22.0... 
995    24.0
996    21.0
997    22.0
998    23.0
999    23.0
Name: age, Length: 1000, dtype: float64

重置索引

#重置索引--------->reset_indexa_pd = pd.DataFrame(np.random.randint(0,10,(3,2)),columns=list('ab'),index=list('efg'))
a_pd.reset_index(drop=True)	#索引从0开始重置
--------------a	b
0	2	3
1	4	0
2	1	9

删除行

# 删除行new_a_pd.drop(1,inplace=True)	#删除第一行
new_a_pd
---------------a	b
0	5	3
2	6	0

索引和切片

series

索引:

data=pd.Series([4,3,25,2,3],index=list('abcde'))
data
--------
a     4
b     3
c    25
d     2
e     3
dtype: int64
=============================
data['a'] #根据key获取
-------------------
4
==========================
data[1] #索引获取
--------------
3
===========================
data[-1]
----------------
3

切片:

#切片
data['a':'d']
---------------
a     4
b     3
c    25
d     2
dtype: int64
=============================
data[2:4] #索引切片
---------------------
c    25
d     2
dtype: int64
===========================
data[-3:-1]
----------------------
c    25
d     2
dtype: int64
=============================
data[data>3]   #获取满足条件的所有行
--------------------
a     4
c    25
dtype: int64

如果索引与行名相同都是1,这时候就不知道是按照哪个来获取,所以获取时候使用loc、iloc:

loc函数:通过行索引 “Index” 中的具体值来取行数据及根据普通索引获取。

iloc函数:通过行号来取行数据,及根据位置索引获取。

data=pd.Series([5,3,2,5,9],index=[1,2,3,4,5])data.loc[1]		#输入名称
----------------
5
====================
data.iloc[1]	#输入位置
-------------
3

DataFrame

取列

当想要获取 df 中某列数据时,只需要在 df 后面的方括号中指明要选择的列即可。如果是一列,则只需要传入一个列名;如果是同时选择多列,则传入多个列名即可(注意:多个列名 用一个 list 存放)。

#获取一列
df[col]
#获取多列
df[[col1 , col2]]  #输入列名

除了传入具体的列名,我们可以传入具体列的位置,即第几行,对数据进行选取,通过传入位置来获取数据时需要用到 iloc 方法。

df.iloc[行位置,[0,2]]

按行列索引选择

DataFrame对象按照行列检索获取,可以使用loc和iloc函数,方括号中逗号之前的部分表示要获取的行的索引,如果输入一个冒号,或不输入任何数值表示获取所有的行或列,逗号之后方括号表示要获取的列的索引。

1 df.loc[普通行索引,普通列索引]
2 df.iloc[位置行索引,位置列索引]

loc与iloc获取

import numpy as np
import pandas as pddata=pd.DataFrame(np.arange(12).reshape(3,4),
index=list('abc'),columns=list('ABCD'))#获取行为'b'的行
data.loc['b']#使用iloc获取,行为'b'的行,行号为1
data.iloc[1]

isin()选择

df.isin(values) 返回结果为相应的位置是否匹配给出的 values

values 为序列:对应每个具体值

values 为字典:对应各个变量名称

values 为数据框:同时对应数值和变量名称

1 df.col.isin([1,3,5])
2 df[ df.col.isin([1,3,5])]
3 df[ df.col.isin(['val1','val2'])]
4 df[ df.index.isin(['val1','val2'])]

query()的使用

使用boolean值表达式进行筛选

df.query(

expr:语句表达式

inplace=False;是否直接替换原数据框

)

可以使用前缀“@”引用环境变量,等号为==,而不是=。

df.query("col>10 and col<90 and col1=val")
======================
limit = 5
df.query("col<=@limit & col==val")
df.query("col<=@limit & col!=val")

排序

用索引排序

df.sort_index(

level :(多重索引时)指定用于排序的级别顺序号/名称18

ascending = True :是否为升序排列,多列时以表形式提供

inplace = False :

na_position = 'last‘ :缺失值的排列顺序 ( first/last)

df = pd.read_excel("stu_data.xlsx",index_col=["学号”,”性别”]) df.set_index( ['学号','性别'], inplace = True )# 通过索引进行排序                                      
df.sort_index()                              
df.sort_index(ascending=False)
df.sort_index(ascending = [True,False])#设置哪个索引进行排序                          
df.sort_index(level="支出")
df.sort_index(level= ["支出","体重"])

使用变量值排序

df.sort_values(

by :指定用于排序的变量名,多列时以列表形式提供

ascending = True :是否为升序排列

inplace = False :

na_position = 'last‘ :缺失值的排列顺序,( first/last)

# 根据值进行排序
df.sort_values(by='身高')

修改替换变量值

本质上是如何直接指定单元格的问题,只要能准确定位单元地址,就能够做到准确替换。

# 判断哪一行是我们要的数据
df.体重[1] = 78
df['体重'][1] = 68
df.loc[1,'体重'] = 78
df.开设.isin(['不清楚'])
df.开设[df.开设.isin(['不清楚'])] = '可以'

对应数值的替换

df.replace(

to_replace = None :将被替换的原数值,所有严格匹配的数值将被用 value 替换,可以

str/regex/list/dict/Series/numeric/None

value = None :希望填充的新数值

inplace = False

)

df.开设.replace('可以','不清楚',inplace = True)df.性别.replace(['女','男'],[0,1],inplace =True)df.性别.replace({0:'女',1:'男'},inplace =True)

数据分组

df.groupby(

by :用于分组的变量名/函数

level = None :相应的轴存在多重索引时,指定用于分组的级别

as_index = True :在结果中将组标签作为索引

sort = True :结果是否按照分组关键字逬行排序

)#生成的是分组索引标记,而不是新的 df

dfg = df.groupby ('开设')#查看dfg里面的数据
dfg.groups#查看具体描述
dfg.describe( )#按多列分组
dfg2 = df.groupby(['性别','开设'])dfg2.mean ()

基于拆分进行筛选

筛选出其中一组

dfgroup.get_group()

dfg.get_group ('不必要').mean ()
dfg.get_group ('不必要').std ()

筛选出所需的列

该操作也适用于希望对不同的变量列进行不同操作时

dfg['身高'].max()

分组汇总

在使用 groupby 完成数据分组后,就可以按照需求进行分组信息汇总,此时可以使用其它专门的汇总命令,如 agg 来完成汇总操作。

使用 agg 函数进行汇总

df.aggregate( )

名称可以直接简写为 agg,可以用 axis 指定汇总维度,可以直接使用的汇总函数。
在这里插入图片描述

dfg.agg( 'count')dfg.agg('median')dfg.agg(['mean', 'median'])dfg.agg(['mean', 'median'])#引用非内置函数
import numpy as np
df2.身高.agg (np. sum)dfg.身高.agg (np. sum)

引用自定义函数

def mynum(x:int) ->int:return x.min()df2.身高.agg (mymean)
dfg.agg(mymean)

处理缺失值

认识缺失值

系统默认的缺失值 None 和 np. nan。

data=pd.Series([3,4,np.nan,1,5,None])
df=pd.DataFrame([[1,2,None],[4,np.nan,6],[5,6,7]])

缺失值查看

直接调用info()方法就会返回每一列的缺失情况。

df=pd.DataFrame([[1,2,np.nan],[4,np.nan,6],[5,6,7]])
df.info()

获取所有缺失值

Pandas中缺失值用NaN表示,从用info()方法的结果来看,索引1这一列是1 2 non-null float64,表示这一列有2个非空值,而应该是3个非空值,说明这一列有1个空值。还可以用isnull()方法来判断哪个值是缺失值,如果是缺失值则返回True,如果不是缺失值返回False。df.isna(): 检查相应的数据是否为缺失值同 df.isnull().

df.notna()等同于notnull()

data=pd.Series([3,4,np.nan,1,5,None])print('isnull()方法判断是否是缺值:')print(data.isnull())
print(data.isna())
print('获取缺值:')
print(data[data.isnull()])
print('获取非空值')
print(data[data.notnull()])

填充缺失值

调用fillna()方法对数据表中的所有缺失值进行填充,在fillna()方法中输入要填充的值。还可以通过method参数使用前一个数和后一个数来进行填充。

df.fillna(value :用于填充缺失值的数值,也可以提供dict/Series/DataFrame 以进—步指明哪些索引/列会被替换不能使用 listmethod = None :有索引时具体的填充方法,向前填充,向后填充等limit = None :指定了 method 后设定具体的最大填充步长,此步长不能填充axis : index (0), columns (1)inplace = False
)

Series对象缺失值填充:

data=pd.Series([3,4,np.nan,1,5,None])print('以0进行填充:')
print(data.fillna(0))
print('以前一个数进行填充:')
print(data.fillna(method='ffill'))
print('以后一个数进行填充:')
print(data.fillna(method='bfill'))
print('先按前一个,再按后一个')
print(data.fillna(method='bfill').fillna(meth od='ffill'))

DataFrame对象缺失值填充:

df=pd.DataFrame([[1,2,np.nan],[4,np.nan,6],[5,6,7]])print('使用数值0来填充:')
print(df.fillna(0))
print('使用行的前一个数来填充:')
print(df.fillna(method='ffill'))
print('使用列的后一个数来填充:')
print(df.fillna(method='bfill' ,axis=1))

列的平均值来填充:

df=pd.DataFrame([[1,2,np.nan],[4,np.nan,6],[5,6,7]])for i in df.columns:df[i]=df[i].fillna(np.nanmean(df[i]))
df

数据查重

标识出重复的行

标识出重复行的意义在于进一步检査重复原因,以便将可能的错误数据加以修改:

df['dup' ] = df.duplicated( ['课程','开设'])
利用索引进行重复行标识df.index.duplicated()
df2 = df.set_index ( ['课程','开设'] )
df2.index.duplicated ()

直接删除重复的行

drop_duplicates (subset=“ ”按照指定的行逬行去重keep='first''last'False 是否直接删除有重复的所有记录)
df. drop_duplicates ( ['课程', '开设' ] )
df. drop_duplicates ( ['课程', '开设' ] , keep = False )

利用査重标识结果直接删除:

#df[~df.duplicated( )]df[~df . duplicated ( ['课程', '开设' ] )]

总结

本篇介绍了,pandas中常用的一些数据处理方法,结合上一篇,常用方法就介绍完了哦,务必好好整理!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/386574.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springcloud RocketMQ 客户端是怎么走到消费业务逻辑的 - debug step by step

springcloud RocketMQ &#xff0c;一个mq消息发送后&#xff0c;客户端是怎么一步步拿到消息去消费的&#xff1f;我们要从代码层面探究这个问题。 找的流程图&#xff0c;有待考究。 以下我们开始debug&#xff1a; 拉取数据的线程&#xff1a; PullMessageService.java 本…

126M全球手机基站SHP数据分享

数据是GIS的血液&#xff01; 我们在《2.8亿东亚五国建筑数据分享》一文中&#xff0c;为你分享过东亚五国建筑数据。 现在再为你分享全球手机基站SHP数据&#xff0c;你可以在文末查看该数据的领取方法。 全球手机基站SHP数据 全球手机基站数据是OpenCelliD团队创建由社区…

【Spring Cloud】Sleuth +Zinkin 实现链路追踪并持久化的解决方案

文章目录 前言链路追踪介绍Sleuth入门Sleuth介绍TraceSpanAnnotation Sleuth入门1、引入依赖2、修改配置文件3、网关路由配置4、演示 Zipkin的集成ZipKin介绍ZipKin服务端安装Zipkin客户端集成1、添加依赖2、添加配置3、访问微服务4、演示 Zipkin数据持久化使用mysql实现数据持…

现代Java开发:使用jjwt实现JWT认证

前言 jjwt 库 是一个流行的 Java 库&#xff0c;用于创建和解析 JWT。我在学习spring security 的过程中看到了很多关于jwt的教程&#xff0c;其中最流行的就是使用jjwt实现jwt认证&#xff0c;但是教程之中依然使用的旧版的jjwt库&#xff0c;许多的类与方法已经标记弃用或者…

多家隧道代理价格:阿布云、快代理、小象代理、熊猫代理和亿牛云……

随着奥运的热度攀升&#xff0c;各大品牌也在抓紧时机赶上这波奥运热潮&#xff0c;随之而来的大量数据信息收集和分析工作也接踵而至&#xff0c;在这一数据采集过程中&#xff0c;HTTP代理的质量和价格对企业的效率和成本调控重要性不言而喻。我们大部分人在日常购买产品的时…

Revit中如何添加剖面?快速实现剖面图的方法汇总

Revit中创建剖面以及剖面视图一般有两种方法&#xff0c;一是使用Revit原生的剖面功能&#xff0c;而是使用Revit插件BIM建模助手进行便捷的剖面操作以及剖面视图创建。 Revit原生的剖面功能&#xff0c;点击后可以自由拉伸剖面方向、范围&#xff0c;放置完剖面符号后&#xf…

【ROS 最简单教程 003/300】ROS 快速体验:Hello World

开始自己的第一次尝试叭 ~ Hello World 本篇是 C 版本&#xff0c;如需 python 版本 &#x1f449; python 版本指路 ROS 中程序的实现流程&#xff1a; 创建工作空间 ( &#x1f499; 如 tutu_ws) &#xff0c;进入并编译 mkdir -p tutu_ws/src cd tutu_ws catkin_make在 src …

【C语言】结构体详解 -《探索C语言的 “小宇宙” 》

目录 C语言结构体&#xff08;struct&#xff09;详解结构体概览表1. 结构体的基本概念1.1 结构体定义1.2 结构体变量声明 2. 结构体成员的访问2.1 使用点运算符&#xff08;.&#xff09;访问成员输出 2.2 使用箭头运算符&#xff08;->&#xff09;访问成员输出 3. 结构体…

springboot使用Gateway做网关并且配置全局拦截器

一、为什么要用网关 统一入口&#xff1a; 作用&#xff1a;作为所有客户端请求的统一入口。说明&#xff1a;所有客户端请求都通过网关进行路由&#xff0c;网关负责将请求转发到后端的微服务 路由转发&#xff1a; 作用&#xff1a;根据请求的URL、方法等信息将请求路由到…

Hive之扩展函数(UDF)

Hive之扩展函数(UDF) 1、概念讲解 当所提供的函数无法解决遇到的问题时&#xff0c;我们通常会进行自定义函数&#xff0c;即&#xff1a;扩展函数。Hive的扩展函数可分为三种&#xff1a;UDF,UDTF,UDAF。 UDF&#xff1a;一进一出 UDTF&#xff1a;一进多出 UDAF&#xff1a…

作业帮6-19笔试-选填题

可以看到10在第一位&#xff0c;说明用的是挖坑法快速排序&#xff0c;过程如下&#xff1a; 右指针从最右边开始&#xff0c;找到第一个比30小的数10&#xff0c;与30交换。 10、15、40、28、50、30、70 左指针从位置1开始&#xff0c;找到40&#xff0c;与30互换。 10、15、3…

C语言 ——— 函数指针的定义 函数指针的使用

目录 何为函数指针 打印 函数名的地址 及 &函数名的地址 函数指针的代码&#xff08;如何正确存储函数地址&#xff09; 函数指针的使用 何为函数指针 类比&#xff1a; 整型指针 - 指向整型数据的指针&#xff0c;整型指针存放的是整型数据的地址 字符指针 - 指向字…

Lc63---1859将句子排序(排序)---Java版(未写完)

1.题目描述 2.思路 &#xff08;1&#xff09;首先将句子按空格分割成若干单词。 &#xff08;2&#xff09;每个单词的最后一个字符是它的位置索引。我们可以通过这个索引将单词恢复到正确的位置。 &#xff08;3&#xff09;按照单词的索引顺序排序这些单词。 &#xff08;4…

分布式搜索引擎ES--Elasticsearch集群

1.Elasticsearch集群的概念 分片机制&#xff1a;每个索引都可以被分片 索引my_doc只有一个主分片&#xff1b;索引shop有三个主分片&#xff1b;索引shop2有5个主分片;(参考前面案例) 每个主分片都包含索引的数据&#xff0c;由于目前是单机&#xff0c;所以副分片是没有的&a…

shardingsphere的学习(二):sharingjdbc操作读写分离

简介 mysql配置读写分离以及使用shardingjdbc配置操作读写分离 读写分离 主数据库负责增删改操作&#xff08;写&#xff09;&#xff0c;从数据库负责查询操作&#xff08;读&#xff09;&#xff0c;主数据库和从数据库之间会数据同步&#xff08;主从复制&#xff09;。 …

【前端】一文带你了解 CSS

文章目录 1. CSS 是什么2. CSS 引入方式2.1 内部样式2.2 外部样式2.3 内联样式 3. CSS 常见选择器3.1 基础选择器3.1.1 标签选择器3.1.2 类选择器3.1.3 id 选择器3.1.4 通配符选择器 3.2 复合选择器3.2.1 后代选择器 4. CSS 常用属性4.1 字体相关4.2 文本相关4.3 背景相关4.4 设…

敢不敢跟我一起搭建一个Agent!不写一行代码,10分钟搞出你的智能体!纯配置也能真正掌握AI最有潜力的技术?AI圈内人必备技能

说一千道一万&#xff0c;不如实地转一转。学了那么久的AI Agent的概念了&#xff0c;是时候该落地一个Agent看看自己的掌握程度了对不对&#xff0c;我们都理解大脑是自动节能的&#xff0c;但是知识的确需要倒逼自己一把才能真的掌握&#xff0c;不瞒大家说&#xff0c;笔者对…

论文阅读:面向自动驾驶场景的多目标点云检测算法

论文地址:面向自动驾驶场景的多目标点云检测算法 概要 点云在自动驾驶系统中的三维目标检测是关键技术之一。目前主流的基于体素的无锚框检测算法通常采用复杂的二阶段修正模块,虽然在算法性能上有所提升,但往往伴随着较大的延迟。单阶段无锚框点云检测算法简化了检测流程,…