量化、剪枝、蒸馏,这些大模型黑话到底说了些啥?

扎克伯格说,Llama3-8B还是太大了,不适合放到手机中,有什么办法?

量化、剪枝、蒸馏,如果你经常关注大语言模型,一定会看到这几个词,单看这几个字,我们很难理解它们都干了些什么,但是这几个词对于现阶段的大语言模型发展特别重要。这篇文章就带大家来认识认识它们,理解其中的原理。

模型压缩

量化、剪枝、蒸馏,其实是通用的神经网络模型压缩技术,不是大语言模型专有的。

模型压缩的意义

通过压缩,模型文件会变小,其使用的硬盘空间也会变小,加载到内存或者显存时使用的缓存空间也会变小,并且模型的运行速度还可能会有一些提高。

通过压缩,使用模型将消耗更少的计算资源,这可以极大的扩展模型的应用场景,特别是对模型大小和计算效率比较关注的地方,比如手机、嵌入式设备等。

压缩的是什么?

压缩的是模型的参数,模型的参数又是什么呢?

你可能听说过现在的机器学习使用的都是神经网络模型,神经网络模型就是模拟人的大脑中的神经网络。

这里我画了一个简单的示意图,大家可以看看。

简单起见,只描述三个神经元:A1、A2、A3,每个神经元都会接收别的神经元的信号,也会将信号传递给别的神经元。

其中A3会接收A1、A2传递过来的信号I_A1、I_A2,但是A3接收A1、A2信号的强度是不一样的(这个强度称为“权重”),假设这里的强度分别是W_13和W_23,A3会对接收到信号数据进行加工:

  • 首先对信号进行加权求和,也就是 I_A1_W_13+I_A2_W_23,
  • 然后再加上A3自己的一个参数 B_3(称为“偏置”),
  • 最后再把这个数据和转换为特定的形式,并把转换后的信号再发给下一个神经元。

在这个信号数据的加工过程中,用到的权重(W_13、W_23)和偏置( B_3 )就是模型的参数,当然模型还有其它一些参数,不过权重和偏置一般是所有参数中的大头,如果用二八原则来划分,应该都在80%以上。

使用大语言模型生成文本时,这些参数都已经是预训练好的,我们并不能对它们进行修改,这就像数学中多项式的系数,我们只能传递未知数xyz进去,然后得到一个输出结果。

模型压缩就是对模型的这些参数进行压缩处理,首要考虑的主要就是权重和偏置,使用的具体方法就是本文重点要介绍的量化、剪枝和蒸馏。

量化

量化就是降低模型参数的数值精度,比如最开始训练出的权重是32位的浮点数,但是实际使用发现用16位来表示也几乎没有什么损失,但是模型文件大小降低一般,显存使用降低一半,处理器和内存之间的通信带宽要求也降低了,这意味着更低的成本、更高的收益。

这就像按照菜谱做菜,你需要确定每种食材的重量。你可以使用一个非常精确的电子秤,它可以精确到0.01克,这固然很好,因为你可以非常精确地知道每样食材的重量。但是,如果你只是做一顿家常便饭,实际上并不需要这么高的精度,你可以使用一个简单又便宜的秤,最小刻度是1克,虽然不那么精确,但是足以用来做一顿美味的晚餐。

量化还有一个好处,那就是计算的更快。现代处理器中通常都包含了很多的低精度向量计算单元,模型可以充分利用这些硬件特性,执行更多的并行运算;同时低精度运算通常比高精度运算速度快,单次乘法、加法的耗时更短。这些好处还让模型得以运行在更低配置的机器上,比如没有高性能GPU的普通办公或家用电脑、手机等移动终端。

沿着这个思路,人们继续压缩出了8位、4位、2位的模型,体积更小,使用的计算资源更少。不过随着权重精度的降低,不同权重的值会越来越接近甚至相等,这会降低模型输出的准确度和精确度,模型的性能表现会出现不同程度的下降。

量化技术有很多不同的策略和技术细节,比如如动态量化、静态量化、对称量化、非对称量化等,对于大语言模型,通常采用静态量化的策略,在模型训练完成后,我们就对参数进行一次量化,模型运行时不再需要进行量化计算,这样可以方便地分发和部署。

剪枝

剪枝就是去掉模型中不重要的或者很少会用到的权重,这些权重的数值一般都接近于0。对于某些模型,剪枝可以产生比较高的压缩比,让模型更加紧凑和高效。这对于在资源受限的设备上或者内存和存储有限的情况下部署模型特别有用。

剪枝还会增强模型的可解释性。通过删除不必要的组件,剪枝使模型的底层结构更加透明且更易于分析。这对于理解神经网络等复杂模型的决策过程十分重要。

剪枝不仅涉及权重参数的剪枝,还可以剪除某些神经元节点,如下图所示:

注意剪枝并非适合所有的模型,对于一些稀疏模型(大部份参数都为0或者接近于0),剪枝可能没什么效果;对于一些参数比较少的小型模型,剪枝可能导致模型性能的明显下降;对于一些高精度的任务或者应用,也不适合对模型进行剪枝,比如医疗诊断这种人命关天的事。

在实际运用剪枝技术时,通常需要综合考虑剪枝对模型运行速度的提升和对模型性能的负面影响,采取一些策略,比如给模型中的每个参数打分,也就是评估参数对模型性能的贡献有多大。分数高的,就是绝对不能剪掉的重要参数;分数低的,就是可能不那么重要,可以考虑剪掉的参数。这个分数可以通过各种方法计算,比如看参数的大小(绝对值大的通常更重要),或者通过一些更复杂的统计分析方法来确定。

蒸馏

蒸馏就是把大模型学习到的概率分布直接复制到一个小模型中。被复制的模型称为教师模型,一般是参数量较大、性能很强的优秀模型,新模型称为学生模型,一般是参数比较少的小模型。

蒸馏时,教师模型会根据输入生成多个可能输出的概率分布,然后学生模型学习这个输入和输出的概率分布情况。经过大量训练,学生模型就可以模仿教师模型的行为,或者说学习到了教师模型的知识。

比如在图像分类任务中,给出一张图,教师模型可能会输出类似如下的概率分布:

  • 猫:0.7
  • 狗:0.4
  • 车:0.1

然后把这张图和输出的概率分布信息一起提交给学生模型进行模仿学习。

因为蒸馏是把教师模型的知识压缩到一个更小更简单的学生模型中,新的模型可能会丢失一些信息;另外学生模型可能过度依赖教师模型,导致模型的泛化能力不佳。

为了让学生模型的学习效果更好,我们可以采用一些方法和策略。

引入温度参数:假设有一位老师讲课速度非常快,信息密度很高,学生可能有点难以跟上。这时如果老师放慢速度,简化信息,就会让学生更容易理解。在模型蒸馏中,温度参数起到的就是类似“调节讲课速度”的作用,帮助学生模型(小模型)更好地理解和学习教师模型(大模型)的知识。专业点说就是让模型输出更加平滑的概率分布,方便学生模型捕捉和学习教师模型的输出细节。

调整教师模型和学生模型的结构: 一个学生想要从一个专家那里学点东西可能是很难的,因为他们之间的知识差距太大,直接学习可能会听不懂,这时候可以在中间加入一个老师,它既能理解专家的话,又能转化为学生可以听懂的语言。中间加入的这个老师可能是一些中间层或者辅助神经网络,或者这个老师可以对学生模型进行一些调整,让它能更匹配教师模型的输出。


上边我们介绍了三种主要的模型压缩技术,其实这里边还有很多的细节,不过对于理解原理差不多已经够了,也还有其它一些模型压缩技术,比如低秩分解、参数共享、稀疏连接等,有兴趣的同学可以多去查查相关内容。

另外模型压缩后,其性能可能会出现比较明显的下降,此时我们可以对模型进行一些微调,特别是一些对模型精度要求比较高的任务,比如医学诊断、金融风控、自动驾驶等,微调可以让模型的性能得到一定的恢复,稳固其在某些方面的准确性和精确性。

谈到模型微调,最近我在AutoDL上分享了一个 Text Generation WebUI 的镜像,Text Generation WebUI 是一个使用Gradio编写的Web程序,可以方便的对大语言模型进行推理、微调,支持多种类型的大语言模型,包括Transformers、llama.cpp(GGUF)、GPTQ、AWQ、EXL2等多种格式的模型,在最新的镜像中,我已经内置了Meta最近开源的 Llama3 大模型,感兴趣的同学可以去体验下,使用方法参见:[十分钟学会微调大语言模型]

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/387289.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

技术分享!国产ARM + FPGA的SDIO通信开发介绍!

SDIO总线介绍 SDIO(Secure Digital lnput and Output),即安全数字输入输出接口。SDIO总线协议是由SD协议演化而来,它主要是对SD协议进行了一些扩展。 SDIO总线主要是为SDIO卡提供一个高速的I/O能力,并伴随着较低的功耗。SDIO总线不但支持SDIO卡,而且还兼容SD内存卡。支持…

一文搞懂网络IO和java中的IO模型

目录 1.绪论 2.IO分类 3.用户空间和内核空间 4.同步阻塞IO 5.同步非阻塞IO 6.IO多路复用 6.1 基本原理 6.2 linux对IO多路复用的实现方式 6.3.1 select 1.实现原理 2.缺点 6.3.2 poll 1.实现原理 6.3.3 epoll 1.epoll数据结构 2.epoll的函数 3.epoll的优点 4…

JS小应用:从图床获取的html代码中提取IMG标签并提取图片复制到剪贴板

JS小应用:从图床获取的html代码中提取IMG标签并提取图片复制到剪贴板 问题产生 自己做站长,为了节省银子,难免要用到图床。有的图床可以直接给你URL,这当然是最好的情况: 而有的图床,却禁用了鼠标右键&am…

Null Pointer Exception: 如何快速定位和修复?️

Null Pointer Exception: 如何快速定位和修复?💡🛠️ Null Pointer Exception: 如何快速定位和修复?💡🛠️摘要引言正文内容什么是Null Pointer Exception?🤔NPE的常见原因&#x1f…

3D魔方lua核心脚本制作

制作不易,请好好欣赏 U→R→F→D→L→B 废话不多说,上脚本 --魔方基本运行程序 --星空露珠优化脚本lua --主核心来自分享 --666 --[=[ #G4=I 1 # 2-----------2------------1 # | U1(0) U2(1) U3(2) | # …

Java中的集合相关知识汇总

总结 Java集合 从数据结构可以分为:数组、Set、Map、队列、栈;从多线程安全可以分为线程安全与非线程安全的集合从关联关系可以总结如下(不包含多线程安全类): 点线框表示接口; 折线框表示抽象类; 实线框表示实现类…

【只出现一次的数字 III】python刷题记录

R2-位运算专题. 目录 哈希表 位运算 ps: 一眼哈希表啊 哈希表 class Solution:def singleNumber(self, nums: List[int]) -> List[int]:dictdefaultdict(int)ret[]for num in nums:dict[num]1for key in dict.keys():if dict[key]1:ret.append(key)return ret怎么用位…

[C++][STL源码剖析] 详解AVL树的实现

目录 1.概念 2.实现 2.1 初始化 2.2 插入 2.2.1 旋转(重点) 左单旋 右单旋 双旋 2.❗ 双旋后,对平衡因子的处理 2.3 判断测试 完整代码: 拓展:删除 1.概念 二叉搜索树虽可以缩短查找的效率,但…

Jeecgboot仪表盘设计器使用https时访问报错

问题 仪表盘设计器设计好后,Nginx配置域名发送https请求时,/drag/page/queryById、/drag/page/addVisitsNumber仍发送http请求。导致发送下面错误: 原因 仪表盘设计器里设计的页面是由后端生成返回给前端的,后端是根据后端服…

java算法day27

java算法day27 动态规划初步总结509 斐波那契数杨辉三角打家劫舍完全平方数 动态规划初步总结 如果你感觉某个问题有很多重叠子问题,使用动态规划是最有效的。 动态规划的过程就是每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心了。贪心是…

mysql死锁排查

Mysql 查询是否存在锁表有多种方式,这里只介绍一种最常用的 1、查看正在进行中的事务 SELECT * FROM information_schema.INNODB_TRX 2、查看正在锁的事务 SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCKS; 3、查看等待锁的事务 SELECT * FROM INFORMATION_SCHEMA.I…

视频VIP收费会员播放帝国CMS模板HTML5自适应手机多种运营模式

采用帝国CMS最新版核心制作,自适应响应式手机平板浏览,手机浏览器非常舒服哦!多种运营模式。用户中心逻辑和页面,都已经制作完整,可以搭建后稍微修改即可使用! 模板特点: 支持多集和单集播放&…

Kafka动态授权认证:利用SASL/SCRAM机制提升安全性

摘要 Apache Kafka是一个流行的分布式流处理平台,其安全性对于保护数据传输至关重要。SASL/SCRAM(Simple Authentication and Security Layer/Salted Challenge Response Authentication Mechanism)是一种认证机制,可以为Kafka集…

从华为出走的工控龙头,豪横收购法国顶尖软件龙头~

导语 大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。 新书《智能物流系统构成与技术实践》 近日,业界传来震撼消息,华为系企业汇川科技正式宣布,已完成对法国顶尖工业软件企业Irai的全资收购。 这一战略…

【LLM】-12-部署Langchain-Chatchat-0.3.x版本

目录 1、0.3与0.2的功能对比 2、0.3.x支持多种部署方式 2.3、源码安装 2.3.1、项目源码下载 2.3.2、创建conda环境 2.3.3、安装poetry 2.3.4、安装依赖库 2.3.5、项目初始化 2.3.6、初始化知识库 2.3.7、启动服务 2.3.8、配置说明 2.3.8.1、basic_settings.yaml 2…

一馆多用,四季皆宜:气膜体育馆的优势与应用—轻空间

促进城市体育发展 装配式气膜体育馆以其便捷的安装、灵活的使用和多功能性,迅速在全国范围内得到推广。这种体育场馆不仅适用于篮球、羽毛球、网球等传统室内运动,还能根据需要灵活改造成游泳馆、滑冰场等特殊场地。这种多功能性使得气膜体育馆在城市中得…

甄选范文“论数据分片技术及其应用”软考高级论文,系统架构设计师论文

论文真题 数据分片就是按照一定的规则,将数据集划分成相互独立、正交的数据子集,然后将数据子集分布到不同的节点上。通过设计合理的数据分片规则,可将系统中的数据分布在不同的物理数据库中,达到提升应用系统数据处理速度的目的。 请围绕“论数据分片技术及其应用”论题…

【ThingsBoard初体验】本地运行源码踩坑记录

前言 运行源码之前,请先编译源码。这很重要!!! 官网源码编译教程:http://www.ithingsboard.com/docs/user-guide/contribution/yuanmabianyi/ 如果编译过程中出现报错,请看我上一篇文章:【Thing…

使用ssh-remote连接远程vscode运行yolo项目时的一点坑

使用ssh-remote连接远程vscode运行yolo项目时的一点坑 1.坑1 因为我是直接下载的release包,然后运行 pip install -e .来下载依赖的,那么这个时候需要使用YOLO时都需要在下载的release文件的目录下的py文件才能生效 比方说我下载的yolov8(ultralytic…

从功能出发:优化超市商品陈列,助力销售额提升

随着时代的发展,竞争的加剧,人们的生活节奏加快,时间观念越来越强。在这种情形下,作为超市,怎样为顾客提供一个舒适方便的购物环境,尽可能让顾客逛完整个卖场,满足一站式购足呢?除了…