黑马头条Day11- 实时计算热点文章、KafkaStream

一、今日内容

1. 定时计算与实时计算

2. 今日内容

KafkaStream

  • 什么是流式计算
  • KafkaStream概述
  • KafkaStream入门案例
  • SpringBoot集成KafkaStream

实时计算

  • 用户行为发送消息
  • KafkaStream聚合处理消息
  • 更新文章行为数量
  • 替换热点文章数据

二、实时流式计算

1. 概念

一般流式计算会与批量计算相比较。在流式计算模型这种,输入是持续的,可以认为在时间上是无界的,也就意味着,永远拿不到全量数据去做计算。同时,计算结果是持续输出的,也即计算结果在时间上也是无界的。流式计算一般对实时性要求较高,同时一般是先定义目标计算,然后数据到来之后将计算逻辑应用于数据。同时为了提高计算效率,往往尽可能采用增量计算替代全量计算

流式计算就相当于上图的右侧扶梯,是可以源源不断的产生数据,源源不断的接收数据,没有边界。

2. 应用场景

日志分析:

对网站的用户访问日志进行实时的分析,计算访问量、用户画像、留存率等,实时进行数据分析,帮助企业进行决策

大屏看板统计:

可以实时的查看网站注册数量、订单数量、购买数量、金额等

公交实时数据:

可以随时更新公交车方位,计算多久到达站牌

实时文章分值计算:

头条类文章的分值计算,通过用户的行为实时计算文章的分值,分值越高就越被推荐。

3. 技术方案选项

Hadoop

Apache Storm

Storm 是一个分布式实时大数据处理系统,可以帮助我们方便地处理海量数据,具有高可靠、高容错、高扩展的特点。是流式框架,有很高的数据吞吐能力。

Kafka Stream

可以轻松地将其嵌入任何Java应用程序中,并与用户为其流应用程序所拥有的任何现有打包、部署和操作工具集成。

三、Kafka Stream

1. 概述

Kafka Stream 是Apache Kafka从1.0版本引入的一个新Feature。它是提供了对存储于Kafka内的数据进行流式处理和分析的功能。

Kafka Stream的特点如下:

  • Kafka Stream提供了一个非常简单而轻量的Library,它可以非常方便地嵌入任意Java应用中,也可以任意方式打包和部署
  • 除了Kafka外,无任何外部依赖
  • 充分利用Kafka分区机制实现水平扩展和顺序性保证
  • 通过可容错的State store实现高效的状态操作(如windowed join和aggregation)
  • 支持正好一次处理语义
  • 提高记录级的处理能力,从而实现毫秒级的低延迟
  • 支持基于事件时间的窗口操作,并且可以处理晚到的数据(late arrival of records)
  • 同时提供底层的处理原理Processor(类似于Storm 的spout和bolt),以及高层抽象的DSL(类似于Spark 的map/group/reduce)

2. Kafka Stream的关键概念

源处理器(Source Processor):源处理器是一个没有任何上游处理器的特殊类型的流处理器。它从一个或多个Kafka主题生成输入流。通过消费这些主题的消息并将它们转发到下游处理器。

Sink处理器:sink处理器是一个没有下游流处理器的特殊类型的流处理器。它接收上游流处理器。它接收上游流处理器的消息发送到一个指定的Kafka主题。

3. KStream

(1)数据结构类似于map,如下图,key-value键值对

(2)KStream

KStream数据流(data stream):即是一段顺序的,可以无限长,不断更新的数据集。数据流中比较常记录的是事件,这些事件可以是一次鼠标点击(click),一次交易,或是传感器记录的位置数据。

KStream负责抽象的,就是数据流。与Kafka自身的topic中的数据一样,类似日志,每一次操作都是向其中插入(insert)新数据

为了说明这一点,让我们想象一下两个数据记录正在发送到流中:

("alice", 1) -> ("alice", 3)

如果您的流处理应用是要总结每个用户的价值,它将返回了4了alice。为什么?因为第二条数据记录将不被视为先前记录的更新。(insert)新数据

4. Kafka Stream入门案例

(1)需求分析,求单词个数(word count)

(2)引入依赖

在之前的kafka-demo工程的pom文件中引入依赖

<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-streams</artifactId><exclusions><exclusion><artifactId>connect-json</artifactId><groupId>org.apache.kafka</groupId></exclusion><exclusion><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></exclusion></exclusions>
</dependency>

(3)创建原生的kafka stream入门案例

package com.heima.kafka.sample;import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.TimeWindows;
import org.apache.kafka.streams.kstream.ValueMapper;import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;/*** 流式处理*/
public class KafkaStreamQuickStart {public static void main(String[] args) {// kafka的配置中心Properties properties = new Properties();properties.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.200.130:9092");properties.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());properties.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());properties.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-quickstart");// stream构建器StreamsBuilder streamsBuilder = new StreamsBuilder();// 流式处理StreamProcessor(streamsBuilder);// 创建KafkaStream对象KafkaStreams kafkaStreams = new KafkaStreams(streamsBuilder.build(), properties);// 开启流式计算kafkaStreams.start();}/*** 流式计算* 消息的内容:hello kafka hello itcast* @param streamsBuilder*/private static void StreamProcessor(StreamsBuilder streamsBuilder) {// 1. 创建kstream对象,同时指定从哪个topic中接收消息KStream<String, String> stream = streamsBuilder.stream("itcast-topic-input");// 2. 处理消息的valuestream.flatMapValues(new ValueMapper<String, Iterable<String>>() {@Overridepublic Iterable<String> apply(String value) {return Arrays.asList(value.split(" "));}})// 按照value进行聚合处理.groupBy((key, value) -> value)// 时间窗口.windowedBy(TimeWindows.of(Duration.ofSeconds(10)))// 统计单词的个数.count()// 转换为KStream.toStream().map((key, value) -> {System.out.println("key: " + key + ", value: " + value);return new KeyValue<>(key.key().toString(), value.toString());})// 发送消息.to("itcast-topic-out");}
}

(4)测试准备

使用生产者在topic为:itcast_topic_input中发送多条消息

package com.heima.kafka.sample;import org.apache.kafka.clients.producer.*;import java.util.Properties;
import java.util.concurrent.ExecutionException;/*** 生产者*/
public class ProducerQuickStart {public static void main(String[] args) throws ExecutionException, InterruptedException {//1.kafka链接配置信息Properties prop = new Properties();//kafka链接地址prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");//key和value的序列化prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");//ack配置  消息确认机制prop.put(ProducerConfig.ACKS_CONFIG,"all");//重试次数prop.put(ProducerConfig.RETRIES_CONFIG,10);//数据压缩prop.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");//2.创建kafka生产者对象KafkaProducer<String,String> producer = new KafkaProducer<String,String>(prop);//3.发送消息/*** 第一个参数 :topic* 第二个参数:消息的key* 第三个参数:消息的value*/for (int i = 0; i < 5; i++) {ProducerRecord<String,String> kvProducerRecord = new ProducerRecord<String,String>("itcast-topic-input","hello kafka");producer.send(kvProducerRecord);}//同步发送消息/*RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();System.out.println(recordMetadata.offset());*///异步消息发送/* producer.send(kvProducerRecord, new Callback() {@Overridepublic void onCompletion(RecordMetadata recordMetadata, Exception e) {if(e != null){System.out.println("记录异常信息到日志表中");}System.out.println(recordMetadata.offset());}});*///4.关闭消息通道  必须要关闭,否则消息发送不成功producer.close();}}

使用消费者接收topic为:itcast_topic_input

package com.heima.kafka.sample;import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;import java.time.Duration;
import java.util.Collections;
import java.util.Properties;/*** 消费者*/
public class ConsumerQuickStart {public static void main(String[] args) {//1.kafka的配置信息Properties prop = new Properties();//链接地址prop.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.200.130:9092");//key和value的反序列化器prop.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");prop.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");//设置消费者组prop.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");//手动提交偏移量prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);//2.创建消费者对象KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(prop);//3.订阅主题consumer.subscribe(Collections.singletonList("itcast-topic-out"));//4.拉取消息//同步提交和异步提交偏移量try {while (true) {ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord.key());System.out.println(consumerRecord.value());/* System.out.println(consumerRecord.offset());System.out.println(consumerRecord.partition());*/}//异步提交偏移量consumer.commitAsync();}}catch (Exception e){e.printStackTrace();System.out.println("记录错误的信息:"+e);}finally {//同步consumer.commitSync();}/*while (true){ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord.key());System.out.println(consumerRecord.value());System.out.println(consumerRecord.offset());System.out.println(consumerRecord.partition());*//* try {//同步提交偏移量consumer.commitSync();}catch (CommitFailedException e){System.out.println("记录提交失败的异常:"+e);}*//*}//异步的方式提交偏移量*//*consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {if(e != null){System.out.println("记录错误的提交偏移量:"+map+",异常信息为:"+e);}}});*//*}*/}}

先启动Consumer,再启动KafkaStream,最后启动Producer发送消息

结果:通过流式计算,会把生产者的多条消息汇总成一条发送到消费者中输出

5. SpringBoot集成Kafka Stream

(1)自定义配置参数

package com.heima.kafka.config;import lombok.Getter;
import lombok.Setter;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.StreamsConfig;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafkaStreams;
import org.springframework.kafka.annotation.KafkaStreamsDefaultConfiguration;
import org.springframework.kafka.config.KafkaStreamsConfiguration;import java.util.HashMap;
import java.util.Map;/*** 通过重新注册KafkaStreamsConfiguration对象,设置自定配置参数*/
@Setter
@Getter
@Configuration
@EnableKafkaStreams
@ConfigurationProperties(prefix = "kafka")
public class KafkaStreamConfig {private static final int MAX_MESSAGE_SIZE = 16 * 1024 * 1024;private String hosts;private String group;@Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)public KafkaStreamsConfiguration defaultKafkaStreamsConfig() {Map<String, Object> props = new HashMap<>();props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, hosts);props.put(StreamsConfig.APPLICATION_ID_CONFIG, this.getGroup()+"_stream_aid");props.put(StreamsConfig.CLIENT_ID_CONFIG, this.getGroup()+"_stream_cid");props.put(StreamsConfig.RETRIES_CONFIG, 10);props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());return new KafkaStreamsConfiguration(props);}
}

修改application.yml文件,在最下方添加自定义配置

kafka:hosts: 192.168.200.130:9092group: ${spring.application.name}

(2)新增配置类,创建KStream对象,进行聚合

package com.heima.kafka.stream;import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.TimeWindows;
import org.apache.kafka.streams.kstream.ValueMapper;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;import java.time.Duration;
import java.util.Arrays;@Configuration
@Slf4j
public class KafkaStreamHelloListener {@Beanpublic KStream<String, String> kStream(StreamsBuilder streamsBuilder) {// 创建KStream对象,同时指定从哪个topic中接收消息KStream<String, String> stream = streamsBuilder.stream("itcast-topic-input");stream.flatMapValues(new ValueMapper<String, Iterable<String>>() {@Overridepublic Iterable<String> apply(String value) {return Arrays.asList(value.split(" "));}})//根据value进行聚合分组.groupBy((key,value)->value)//聚合计算时间间隔.windowedBy(TimeWindows.of(Duration.ofSeconds(10)))//求单词的个数.count().toStream()//处理后的结果转换为string字符串.map((key,value)->{System.out.println("key:"+key+",value:"+value);return new KeyValue<>(key.key().toString(),value.toString());})//发送消息.to("itcast-topic-out");return stream;}
}

(3)测试:先启动ConsumerQuickStart -> KafkaDemoApplication -> ProducerQuickStart

启动微服务,正常发送消息,可以正常接收到消息

四、App端热点文章计算

1. 思路说明

2. 功能实现

2.1 用户行为(阅读、评论、点赞、收藏)发送消息,以阅读和点赞为例

(在第9天的实战中,我已经把这部分做了)

步骤①:在heima-leadnews-behavior微服务中集成Kafka生产者配置

在nacos修改leadnews-behavior.yml

spring:kafka:bootstrap-servers: 192.168.200.130:9092producer:retries: 10key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializerautoconfigure:exclude: org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfigurationredis:host: 192.168.200.130password: leadnewsport: 6379

步骤②:修改ApLikesBehaviorServiceImpl,新增发送消息

定义消息发送封装类:UpdateArticleMess

package com.heima.model.mess;import lombok.Data;@Data
public class UpdateArticleMess {/*** 修改文章的字段类型*/private UpdateArticleType type;/*** 文章ID*/private Long articleId;/*** 修改数据的增量,可为正负*/private Integer add;public enum UpdateArticleType{COLLECTION,COMMENT,LIKES,VIEWS;}
}

topic常量类:HotArticleConstants

package com.heima.common.constants;public class HotArticleConstants {public static final String HOT_ARTICLE_SCORE_TOPIC="hot.article.score.topic";public static final String HOT_ARTICLE_INCR_HANDLE_TOPIC="hot.article.incr.handle.topic";
}

ApLikesBehaviorServiceImpl:

package com.heima.behavior.service.impl;import com.alibaba.fastjson.JSON;
import com.heima.behavior.service.ApLikesBehaviorService;
import com.heima.common.constants.BehaviorConstants;
import com.heima.common.constants.HotArticleConstants;
import com.heima.common.redis.CacheService;
import com.heima.model.behavior.dtos.LikesBehaviorDto;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.common.enums.AppHttpCodeEnum;
import com.heima.model.mess.UpdateArticleMess;
import com.heima.model.user.pojos.ApUser;
import com.heima.utils.thread.AppThreadLocalUtil;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;@Service
@Transactional
@Slf4j
public class ApLikesBehaviorServiceImpl implements ApLikesBehaviorService {@Autowiredprivate CacheService cacheService;@Autowiredprivate KafkaTemplate<String, String> kafkaTemplate;/*** 点赞或取消点赞* @param dto 0:点赞 1:取消点赞* @return*/@Overridepublic ResponseResult like(LikesBehaviorDto dto) {// 1. 检查参数if(dto == null || dto.getArticleId() == null || checkParam(dto)) {return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);}// 2. 是否登录ApUser apUser = AppThreadLocalUtil.getUser();if(apUser == null) {return ResponseResult.errorResult(AppHttpCodeEnum.NEED_LOGIN);}UpdateArticleMess mess = new UpdateArticleMess();mess.setArticleId(dto.getArticleId());mess.setType(UpdateArticleMess.UpdateArticleType.LIKES);// 3. 点赞,保存数据if(dto.getOperation() == 0) {Object obj = cacheService.hGet(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), apUser.getId().toString());if(obj != null) {return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID, "已点赞");}// 保存当前keylog.info("保存当前key:{}, {}, {}", dto.getArticleId(), apUser.getId(), dto);cacheService.hPut(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), apUser.getId().toString(), JSON.toJSONString(dto));mess.setAdd(1);} else {// 取消点赞,删除当前keylog.info("删除当前key:{}, {}", dto.getArticleId(), apUser.getId());cacheService.hDelete(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), apUser.getId().toString());mess.setAdd(-1);}// 4. 发送消息,数据聚合kafkaTemplate.send(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC,JSON.toJSONString(mess));// 5. 结果返回return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);}/*** 检查参数* @param dto* @return*/private boolean checkParam(LikesBehaviorDto dto) {// 参数有误if(dto.getType() > 2 || dto.getType() < 0 || dto.getOperation() > 1 || dto.getOperation() < 0) {return true;}return false;}
}

步骤③:修改阅读行为的类ApReadBehaviorServiceImpl发送消息

package com.heima.behavior.service.impl;import com.alibaba.fastjson.JSON;
import com.heima.behavior.service.ApReadBehaviorService;
import com.heima.common.constants.BehaviorConstants;
import com.heima.common.constants.HotArticleConstants;
import com.heima.common.redis.CacheService;
import com.heima.model.behavior.dtos.ReadBehaviorDto;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.common.enums.AppHttpCodeEnum;
import com.heima.model.mess.UpdateArticleMess;
import com.heima.model.user.pojos.ApUser;
import com.heima.utils.thread.AppThreadLocalUtil;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;@Service
@Transactional
@Slf4j
public class ApReadBehaviorServiceImpl implements ApReadBehaviorService {@Autowiredprivate CacheService cacheService;@Autowiredprivate KafkaTemplate<String, String> kafkaTemplate;/*** 用户行为 - 阅读* @param dto* @return*/@Overridepublic ResponseResult readBehavior(ReadBehaviorDto dto) {// 1. 检查参数if(dto == null || dto.getArticleId() == null) {return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);}// 2. 是否登录ApUser user = AppThreadLocalUtil.getUser();if(user == null) {return ResponseResult.errorResult(AppHttpCodeEnum.NEED_LOGIN);}// 3. 更新阅读次数String readBehaviorJson = (String) cacheService.hGet(BehaviorConstants.READ_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString());if(StringUtils.isNotBlank(readBehaviorJson)) {ReadBehaviorDto readBehaviorDto = JSON.parseObject(readBehaviorJson, ReadBehaviorDto.class);dto.setCount((short) (readBehaviorDto.getCount() + dto.getCount()));}// 4. 保存当前keylog.info("保存当前key: {} {} {}", dto.getArticleId(), user.getId(), dto);cacheService.hPut(BehaviorConstants.READ_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString(), JSON.toJSONString(dto));// 5. 发送消息,数据聚合UpdateArticleMess mess = new UpdateArticleMess();mess.setArticleId(dto.getArticleId());mess.setType(UpdateArticleMess.UpdateArticleType.VIEWS);mess.setAdd(1);kafkaTemplate.send(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC, JSON.toJSONString(mess));// 6. 结果返回return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);}
}

2.2 使用KafkaStream实时接收消息,聚合内容

步骤①:在heima-leadnews-article微服务中集成kafkaStream

在pom.xml(heima-leadnews-article)添加Kafka Stream的依赖

<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-streams</artifactId><exclusions><exclusion><artifactId>connect-json</artifactId><groupId>org.apache.kafka</groupId></exclusion><exclusion><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></exclusion></exclusions>
</dependency>

KafkaStreamConfig:

package com.heima.article.config;import lombok.Getter;
import lombok.Setter;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.StreamsConfig;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafkaStreams;
import org.springframework.kafka.annotation.KafkaStreamsDefaultConfiguration;
import org.springframework.kafka.config.KafkaStreamsConfiguration;import java.util.HashMap;
import java.util.Map;/*** 通过重新注册KafkaStreamsConfiguration对象,设置自定配置参数*/@Setter
@Getter
@Configuration
@EnableKafkaStreams
@ConfigurationProperties(prefix="kafka")
public class KafkaStreamConfig {private static final int MAX_MESSAGE_SIZE = 16* 1024 * 1024;private String hosts;private String group;@Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)public KafkaStreamsConfiguration defaultKafkaStreamsConfig() {Map<String, Object> props = new HashMap<>();props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, hosts);props.put(StreamsConfig.APPLICATION_ID_CONFIG, this.getGroup()+"_stream_aid");props.put(StreamsConfig.CLIENT_ID_CONFIG, this.getGroup()+"_stream_cid");props.put(StreamsConfig.RETRIES_CONFIG, 10);props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());return new KafkaStreamsConfiguration(props);}
}

在nacos配置正常的leadnews-article添加如下

# 。。。 。。。省略
kafka:hosts: 192.168.200.130:9092group: ${spring.application.name}

步骤②:定义实体类,用于聚合之后的分值封装

package com.heima.model.article.mess;import lombok.Data;@Data
public class ArticleVisitStreamMess {/*** 文章id*/private Long articleId;/*** 阅读*/private int view;/*** 收藏*/private int collect;/*** 评论*/private int comment;/*** 点赞*/private int like;
}

步骤③:定义stream,接收消息聚合

package com.heima.article.stream;import com.alibaba.fastjson.JSON;
import com.heima.common.constants.HotArticleConstants;
import com.heima.model.mess.ArticleVisitStreamMess;
import com.heima.model.mess.UpdateArticleMess;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.kstream.*;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;import java.time.Duration;@Configuration
@Slf4j
public class HotArticleStreamHandler {@Beanpublic KStream<String,String> kStream(StreamsBuilder streamsBuilder){//接收消息KStream<String,String> stream = streamsBuilder.stream(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC);//聚合流式处理stream.map((key,value)->{UpdateArticleMess mess = JSON.parseObject(value, UpdateArticleMess.class);//重置消息的key:1234343434   和  value: likes:1return new KeyValue<>(mess.getArticleId().toString(),mess.getType().name()+":"+mess.getAdd());})//按照文章id进行聚合.groupBy((key,value)->key)//时间窗口.windowedBy(TimeWindows.of(Duration.ofSeconds(10)))/*** 自行的完成聚合的计算*/.aggregate(new Initializer<String>() {/*** 初始方法,返回值是消息的value* @return*/@Overridepublic String apply() {return "COLLECTION:0,COMMENT:0,LIKES:0,VIEWS:0";}/*** 真正的聚合操作,返回值是消息的value*/}, new Aggregator<String, String, String>() {/**** @param key* @param value  likes:1* @param aggValue   COLLECTION:0,COMMENT:0,LIKES:0,VIEWS:0* @return*/@Overridepublic String apply(String key, String value, String aggValue) {System.out.println(value);if(StringUtils.isBlank(value)){return aggValue;}String[] aggAry = aggValue.split(",");int col = 0,com=0,lik=0,vie=0;for (String agg : aggAry) {String[] split = agg.split(":");/*** 获得初始值,也是时间窗口内计算之后的值*/switch (UpdateArticleMess.UpdateArticleType.valueOf(split[0])){case COLLECTION:col = Integer.parseInt(split[1]);break;case COMMENT:com = Integer.parseInt(split[1]);break;case LIKES:lik = Integer.parseInt(split[1]);break;case VIEWS:vie = Integer.parseInt(split[1]);break;}}/*** 累加操作   likes:1*/String[] valAry = value.split(":");switch (UpdateArticleMess.UpdateArticleType.valueOf(valAry[0])){case COLLECTION:col += Integer.parseInt(valAry[1]);break;case COMMENT:com += Integer.parseInt(valAry[1]);break;case LIKES:lik += Integer.parseInt(valAry[1]);break;case VIEWS:vie += Integer.parseInt(valAry[1]);break;}String formatStr = String.format("COLLECTION:%d,COMMENT:%d,LIKES:%d,VIEWS:%d", col, com, lik, vie);System.out.println("文章的id:"+key);System.out.println("当前时间窗口内的消息处理结果:"+formatStr);return formatStr;}}, Materialized.as("hot-atricle-stream-count-001")).toStream().map((key,value)->{return new KeyValue<>(key.key().toString(),formatObj(key.key().toString(),value));})//发送消息.to(HotArticleConstants.HOT_ARTICLE_INCR_HANDLE_TOPIC);return stream;}/*** 格式化消息的value数据* @param articleId* @param value* @return*/public String formatObj(String articleId,String value){ArticleVisitStreamMess mess = new ArticleVisitStreamMess();mess.setArticleId(Long.valueOf(articleId));//COLLECTION:0,COMMENT:0,LIKES:0,VIEWS:0String[] valAry = value.split(",");for (String val : valAry) {String[] split = val.split(":");switch (UpdateArticleMess.UpdateArticleType.valueOf(split[0])){case COLLECTION:mess.setCollect(Integer.parseInt(split[1]));break;case COMMENT:mess.setComment(Integer.parseInt(split[1]));break;case LIKES:mess.setLike(Integer.parseInt(split[1]));break;case VIEWS:mess.setView(Integer.parseInt(split[1]));break;}}log.info("聚合消息处理之后的结果为:{}",JSON.toJSONString(mess));return JSON.toJSONString(mess);}
}

2.3 重新计算文章的分值,更新到数据库和缓存中

步骤①:在ApArticleService添加方法,用于更新数据库中的文章分值

/*** 更新文章的分值  同时更新缓存中的热点文章数据* @param mess*/
public void updateScore(ArticleVisitStreamMess mess);

实现类方法:

/*** 更新文章的分值  同时更新缓存中的热点文章数据* @param mess*/
@Override
public void updateScore(ArticleVisitStreamMess mess) {//1.更新文章的阅读、点赞、收藏、评论的数量ApArticle apArticle = updateArticle(mess);//2.计算文章的分值Integer score = computeScore(apArticle);score = score * 3;//3.替换当前文章对应频道的热点数据replaceDataToRedis(apArticle, score, ArticleConstants.HOT_ARTICLE_FIRST_PAGE + apArticle.getChannelId());//4.替换推荐对应的热点数据replaceDataToRedis(apArticle, score, ArticleConstants.HOT_ARTICLE_FIRST_PAGE + ArticleConstants.DEFAULT_TAG);}/*** 替换数据并且存入到redis* @param apArticle* @param score* @param s*/
private void replaceDataToRedis(ApArticle apArticle, Integer score, String s) {String articleListStr = cacheService.get(s);if (StringUtils.isNotBlank(articleListStr)) {List<HotArticleVo> hotArticleVoList = JSON.parseArray(articleListStr, HotArticleVo.class);boolean flag = true;//如果缓存中存在该文章,只更新分值for (HotArticleVo hotArticleVo : hotArticleVoList) {if (hotArticleVo.getId().equals(apArticle.getId())) {hotArticleVo.setScore(score);flag = false;break;}}//如果缓存中不存在,查询缓存中分值最小的一条数据,进行分值的比较,如果当前文章的分值大于缓存中的数据,就替换if (flag) {if (hotArticleVoList.size() >= 30) {hotArticleVoList = hotArticleVoList.stream().sorted(Comparator.comparing(HotArticleVo::getScore).reversed()).collect(Collectors.toList());HotArticleVo lastHot = hotArticleVoList.get(hotArticleVoList.size() - 1);if (lastHot.getScore() < score) {hotArticleVoList.remove(lastHot);HotArticleVo hot = new HotArticleVo();BeanUtils.copyProperties(apArticle, hot);hot.setScore(score);hotArticleVoList.add(hot);}} else {HotArticleVo hot = new HotArticleVo();BeanUtils.copyProperties(apArticle, hot);hot.setScore(score);hotArticleVoList.add(hot);}}//缓存到redishotArticleVoList = hotArticleVoList.stream().sorted(Comparator.comparing(HotArticleVo::getScore).reversed()).collect(Collectors.toList());cacheService.set(s, JSON.toJSONString(hotArticleVoList));}
}/*** 更新文章行为数量* @param mess*/
private ApArticle updateArticle(ArticleVisitStreamMess mess) {ApArticle apArticle = getById(mess.getArticleId());apArticle.setCollection(apArticle.getCollection()==null?0:apArticle.getCollection()+mess.getCollect());apArticle.setComment(apArticle.getComment()==null?0:apArticle.getComment()+mess.getComment());apArticle.setLikes(apArticle.getLikes()==null?0:apArticle.getLikes()+mess.getLike());apArticle.setViews(apArticle.getViews()==null?0:apArticle.getViews()+mess.getView());updateById(apArticle);return apArticle;}/*** 计算文章的具体分值* @param apArticle* @return*/
private Integer computeScore(ApArticle apArticle) {Integer score = 0;if(apArticle.getLikes() != null){score += apArticle.getLikes() * ArticleConstants.HOT_ARTICLE_LIKE_WEIGHT;}if(apArticle.getViews() != null){score += apArticle.getViews();}if(apArticle.getComment() != null){score += apArticle.getComment() * ArticleConstants.HOT_ARTICLE_COMMENT_WEIGHT;}if(apArticle.getCollection() != null){score += apArticle.getCollection() * ArticleConstants.HOT_ARTICLE_COLLECTION_WEIGHT;}return score;
}

步骤②:定义监听,接收聚合之后的数据,文章的分值重新进行计算

package com.heima.article.listener;import com.alibaba.fastjson.JSON;
import com.heima.article.service.ApArticleService;
import com.heima.common.constants.HotArticleConstants;
import com.heima.model.mess.ArticleVisitStreamMess;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;@Component
@Slf4j
public class ArticleIncrHandleListener {@Autowiredprivate ApArticleService apArticleService;@KafkaListener(topics = HotArticleConstants.HOT_ARTICLE_INCR_HANDLE_TOPIC)public void onMessage(String mess){if(StringUtils.isNotBlank(mess)){ArticleVisitStreamMess articleVisitStreamMess = JSON.parseObject(mess, ArticleVisitStreamMess.class);apArticleService.updateScore(articleVisitStreamMess);}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/387837.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Win10】记一次蓝屏修复

最近电脑蓝屏了好多次&#xff0c;错误代码为&#xff1a;IRQL_NOT_LESS_OR_EQUAL 直接搜这个错误代码不太好找原因&#xff0c;于是按照这篇文章[1]来打开错误日志文件。 需要先在windows的应用商店中下载WinDbg 然后&#xff0c;打开目录 C:\Windows\Minidump &#xff0c;…

“论云原生架构及其应用”写作框架软考高级论文系统架构设计师论文

论文真题 近年来&#xff0c;随着数字化转型不断深入&#xff0c;科技创新与业务发展不断融合&#xff0c;各行各业正在从大工业时代的固化范式进化成面向创新型组织与灵活型业务的崭新模式。在这一背景下&#xff0c;以容器和微服务架构为代表的云原生技术作为云计算服务的新…

CANoe在使用时碰到的一些很少见的Bug

CANoe作为一款成熟且稳定的总线仿真与测试工具&#xff0c;深受汽车工程师们的喜爱。CANoe虽然稳定&#xff0c;但作为一个软件来说&#xff0c;在使用中总会出现一些或大或小的Bug。最近全球范围内的大规模蓝屏事件&#xff0c;是由某个安全软件引起的。而很多CANoe使用者最近…

linux常使用的命令

关机命令 shutdown halt poweroff reboot grep 选项 参数 -l 显示所有包含关键字的文件名 -n 在匹配之前加上行号 -c 只显示匹配的行数 -v 显示不匹配的行 管道符 “|” 左边的输出作为右边的输入 例如&#xff1a;我们找个文件包含abc 但是不含有def的文件 grep …

《如鸢》开通官号,女性向游戏爆款预定

今天&#xff0c;备受瞩目的沉浸式剧情卡牌手游《如鸢》正式开通了官方社媒账号并发布了玩家信。 《如鸢》由灵犀互娱倾力打造&#xff0c;游戏不仅拥有跌宕起伏的权谋剧情&#xff0c;更采用Live2D技术&#xff0c;为玩家带来沉浸式的游戏体验&#xff0c;吸引了众多玩家关注。…

西门子s7第三方(S7netplus)读写操作

和西门子PLC通讯需要使用S7netplus​​这个包&#xff0c;可以在NuGet​​上搜索下载&#xff0c;下载后引入命令空间using S7.Net;​​ 创建PLC对象进行连接使用Write Read进行读写操作即可不需要在发请求帧 //创建Plc对象Plc plc; //西门子设备是s7-1200//参数1 CPu类型//参…

AIGC大模型产品经理高频面试大揭秘‼️

近期有十几个学生在面试大模型产品经理&#xff08;薪资还可以&#xff0c;详情见下图&#xff09;&#xff0c;根据他们面试&#xff08;包括1-4面&#xff09;中出现高频大于3次的问题汇总如下&#xff0c;一共32道题目&#xff08;有答案&#xff09;。 29.讲讲T5和Bart的区…

kubernetes管理GUI工具Lens

从github上可以知道&#xff0c;lens的前端是用electron做的客户端工具&#xff0c;打开安装路径你会发现kubectl.exe,没错&#xff0c;就是你经常用的kubectl命令行的客户端工具。kubectl本来就能输出json的数据类型&#xff0c;集成前端更方便了。看到这里你是不是发现&#…

怎么给电脑选一款合适的固态硬盘?就看这个参数!

前言 前段时间有很多小伙伴找小白修电脑&#xff0c;在修电脑的过程中&#xff0c;小白也会稍微看一下硬件配置。 小白就发现一个事情&#xff1a;很多小伙伴其实都不太懂电脑硬件。 为啥这么说呢&#xff1f;简单来说就是主板上使用了“不合适”的固态硬盘作为主系统硬盘。…

VSCode+Vue3无法找到模块“../components/xxxxx.vue”的声明文件的错误

莫名奇妙的错误 今天用Vue3写个demo&#xff0c;在components下面新建了一个DeviceList.Vue的文件&#xff0c;在HomeView引用它后居然报错&#xff0c;提示&#xff1a;无法找到模块“…/components/DeviceList.vue”的声明文件&#xff0c;真是离了个大谱&#xff0c;文件明…

C# Unity 面向对象补全计划 之 访问修饰符

本文仅作学习笔记与交流&#xff0c;不作任何商业用途&#xff0c;作者能力有限&#xff0c;如有不足还请斧正 本系列旨在通过补全学习之后&#xff0c;给出任意类图都能实现并做到逻辑上严丝合缝

人工智能的现状与未来展望

随着科技的飞速发展&#xff0c;人工智能逐渐成为人们关注的焦点。本文将分析当前人工智能的发展现状&#xff0c;并展望其未来的发展趋势。 一、引言 近年来&#xff0c;人工智能在全球范围内得到了广泛关注。作为一项具有广泛应用前景的技术&#xff0c;人工智能正在改变着…

仕考网:公务员可以报考军队文职吗?

公务员可以报考军队文职考试&#xff0c;但是需要满足前提条件。 对于已经与国家、地方的用人单位建立劳动关系的社会人才&#xff0c;在获得当前用人单位的许可后才可以申请报考。 在面试过程中&#xff0c;考生必须出示一份由其用人单位出具的且加盖公章的同意报考证明。一…

24导游证报名照片要求是什么❓整理好了❗

24导游证报名照片要求是什么❓整理好了❗ 导游资格考试今天开始报名啦&#xff01; ⚠️考生们注意&#xff0c;需要上传免冠证件照、身份证扫描件、学历证明等照片信息&#xff01; ⚠️这里需要注意一下上传的照片文件信息规格&#xff0c;否则上传失败&#xff0c;无法完…

计算机网络HTTP全讲解,让你透彻掌握HTTP协议(三)http长短连接/代理/网关/缓存/内容协商机制/断点续传

HTTP HTTP的长连接与短连接短链接长链接HTTP代理代理的作用HTTP网关web网关常见的网关类型HTTP缓存HTTP缓存头部字段HTTP缓存工作方式缓存改进方案cdn缓存工作方式浏览器操作对http缓存的影响HTTP内容协商机制客户端驱动服务器驱动请求首部集近似匹配透明协商断点续传和多线程下…

mysql 慢查询调优实战——between and

现象 SQL报警慢查询 原SQL select * from awards_record WHERE ( create_time between 2024-07-01 00:00:00 and 2024-07-30 00:18:58.004)索引信息 KEY idx_createtime (create_time) USING BTREEexplain分析&#xff0c;发现没走上面的索引 原因 查询数据时&#xff0…

PHP反序列化漏洞从入门到深入8k图文介绍,以及phar伪协议的利用

文章参考&#xff1a;w肝了两天&#xff01;PHP反序列化漏洞从入门到深入8k图文介绍&#xff0c;以及phar伪协议的利用 前言 本文内容主要分为三个部分&#xff1a;原理详解、漏洞练习和防御方法。这是一篇针对PHP反序列化入门者的手把手教学文章&#xff0c;特别适合刚接触PH…

Java学习Day19:基础篇9

包 final 权限修饰符 空着不写是default&#xff01; 代码块 1.静态代码块 1.静态代码块优于空参构造方法 2.静态调用只被加载一次&#xff1b; 静态代码块在Java中是一个重要的特性&#xff0c;它主要用于类的初始化操作&#xff0c;并且随着类的加载而执行&#xff0c;且只…

Kafka知识总结(分区机制+压缩机制+拦截器+副本机制)

文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 分区机制 分区策略 分区策略是决定生产者将消息发送到哪个分区的…

明天(8月1日)起施行,这些新规将影响你我生活。

文章目录 I 地方性新规1.1 无需再出示残疾纸质证件1.2《甘肃省反家庭暴力条例》1.3 新修订的《内蒙古自治区失业保险实施办法》II 全面性新规2.1《中药饮片标签管理规定》2.2 亮码可办2.3 免税额度提高至12000元2.4 矿山生态修复国家标准正式施行2.5《公平竞争审查条例》2.6 《…