C语言数据在内存中的存储超详解

文章目录

  • 1. 整数在内存中的存储
  • 2. 大小端字节序和字节序判断
    • 2. 1 什么是大小端?
    • 2. 2 为什么会有大小端?
    • 2. 3 练习
  • 3. 浮点数在内存中的存储
    • 3. 1 一个代码
    • 3. 2 浮点数的存储
    • 3. 2. 1 浮点数存的过程
    • 3. 2. 2 浮点数取的过程
    • 3. 3 题目解析


1. 整数在内存中的存储

在操作符的博客中,我们就了解过了下面的内容:

  1. 整数的二进制表示方法有三种,即原码、反码和补码,有符号的整数,三种表示方法均有符号位数值位两部分,符号位都是用0表示“正”,用1表 示“负”,最高位的一位是被当做符号位,剩余的都是数值位。
  2. 正整数的原、反、补码都相同。
    负整数的三种表示方法各不相同。
  3. 原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码
    反码:将原码的符号位不变,其他位依次按位取反就可以得到反码
    补码:反码+1就得到补码。

实际上对于整形来说:数据存放在内存中的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。
原因在于,使用补码,可以将符号位和数值域统一处理
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是
相同的
,不需要额外的硬件电路。
关于 其运算过程是相同的 这一点:正整数不必赘述,负数的补码是原码取反+1,如果要从补码得到原码的操作应该是-1再取反,但实际上由于是二进制,取反+1也能得到原码,因此说补码和反码的转换是相同的。

2. 大小端字节序和字节序判断

在了解了数据整数在内存中的存储之后,我们通过调试来看一个细节:
来看这个代码:

#include<stdio.h>
int main()
{int a = 0x11223344;return 0;
}

这里给int 变量a赋值了八进制的 11223344,那它在内存中是这么存储的吗?我们来看一看:
&a
调试的时候,我们可以看到在a中的 0x11223344 这个数字是按照字节为单位,倒着存储的。这是为什么呢?

2. 1 什么是大小端?

其实超过一个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储小端字节序存储,下面是具体的概念:

大端(存储)模式:
是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。

小端(存储)模式:
是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。

也就是说:倒着存储的,就是小端字节序

2. 2 为什么会有大小端?

为什么会有大小端模式之分呢?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit 位,但是在C语言中除了8bitchar 之外,还有16bitshort 型,32bitlong 型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如:-个 16bitshortx,在内存中的地址为 0x0010x的值为 0x1122 ,那么0x11 为高字节,0x22 为低字节。对于大端模式,就将 0x11 放在低地址0x0010 中,0x22 放在高地址0x0011 中。小端模式则刚好相反。我们常用的 X86 结构是小端模式,而KEIL C51 则为大端模式。很多的ARMDSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

2. 3 练习

练习一
请简述大端字节序和小端字节序的概念,设计个小程序来判断当前机器的字节序。(10分)-百度笔试题
怎么来判断当前机器的字节序呢?既然是程序,那当然不能通过调试来看。
我们可以想一想 int 类型和 char 类型来判断:

#include<stdio.h>int check()
{int a = 1;return *(char*)&a;
}int main()
{if (check())printf("小端");elseprintf("大端");return 0;
}

下面我们来分析一下这个 check 程序的原理:
如果说机器是小端存储的,那么它在内存中就是:

01 00 00 00

&a 得到的是 a 的这4个字节的第一个字节的地址,也就是 01 这个字节,将其强制类型转换为 char* 再解引用,得到的就是 1
如果是小段字节序,得到的就是0

那么除了用这样的办法以外,我们还可以使用联合体这一自定义结构:

#include<stdio.h>int check()
{union c{int a;char b;}tmp;tmp.a = 1;return tmp.b;
}int main()
{if (check())printf("小端");elseprintf("大端");return 0;
}

这里简要介绍一下联合体,它和结构体一样都是C语言提供的自定义类型,创建与使用都十分地相似,不同之处在于:联合体中的每一个变量都是存储在同一个地址中的。也就是说,上面这个联合体的 a 变量有4个字节,而另一个 变量 b 就是 a 的第一个字节,那么新的 check 函数和上面的 check 函数的原理和结果都是相同的。

练习二

#include <stdio.h>
int main()
{char a = -1;signed char b = -1;unsigned char c = -1;printf("a=%d,b=%d,c=%d", a, b, c);return 0;
}

输出结果为?

首先,我们先要知道 char 类型是有符号还是无符号的?事实上这取决于编译器,但大多数的编译器,包括VS2022char == signed char

我们继续分析:
-1的补码很容易算,是

11111111111111111111111111111111

那么在将其赋值给不同的 char 类型变量时,会把内存中的第一个字节的内容,也就是

11111111

赋值过去,所以a,b,c三个变量存储的都是这个。
a 在打印时,使用了%d占位符要发生整形提升,而且a是有符号的类型,发生整形提升时,高位补原来的最高位,也就是1:

11111111111111111111111111111111

再进行打印,就是-1。
b与a同理。

我们再来看c,c是无符号类型,发生整形提升时,高位补0,得到的就是:

00000000000000000000000011111111

再进行打印,就是255。
所以这个代码的运行结果是:
运行结果
练习三

//代码一
#include <stdio.h>
int main()
{char a = -128;printf("%u\n", a);return 0;
}
//代码二
#include <stdio.h>
int main()
{char a = 128;printf("%u\n", a);return 0;
}

这两段代码的输出结果分别是什么?
代码一:
-128的反码是

11111111111111111111111110000000

那么放入a的就是

10000000

%uunsigned int ,所以要发生整形提升。a是有符号的,高位补1,就是

11111111111111111111111110000000

那么代码一的结果就是将这个数以无符号的形式打印出来。
也就是:
代码一
代码二:
128的反码和原码相同,也就是:

00000000000000000000000010000000

那么放入 a 的就是

10000000

再进行整形提升,就是:

11111111111111111111111110000000

把这个数按照 %u 的格式打印出来就是结果了:
代码二
练习四

#include <stdio.h>
int main()
{char a[1000];int i;for (i = 0; i < 1000; i++){a[i] = -1 - i;}printf("%d", strlen(a));return 0;
}

提示:'\0'的ASCII码值为0
要计算出哪一个位置会得到0,我们先要算出如果a[i]是 0 ,等号右边应该是什么样的数:
a[i]char变量,取的是-1-i在内存中的的最后一个字节的内容,很显然 -1-i 恒为负数,那么最后一个字节的内容如果是:00000000,那么在原码中,最后一个字节的内容应该是:00000000,最大的满足这个的原码是:10000000000000000000000100000000,也就是-256,那么此时的i就是255,所以a的长度应该是255.
练习四
练习五:

//代码一
#include <stdio.h>
unsigned char i = 0;
int main()
{for (i = 0; i <= 255; i++){printf("hello world\n");}return 0;
}
//代码二
#include <stdio.h>
int main()
{unsigned int i;for (i = 9; i >= 0; i--){printf("%u\n", i);}return 0;
}

代码一
i<=255是恒成立的,为什么?
unsigned char 类型的最大值是255,如果此时再+1,就会变成多少呢?
我们通过一个代码来测试:

#include<stdio.h>
int main()
{unsigned char a = 255;a++;printf("%d", a);return 0;
}

测试结果
可以看到,此时a又变成了 unsigned char 的最小值0。
那么上面的循环就是一个死循环,会不停地打印hello world
执行结果
代码二
unsigned int 的取值范围最小为0,再-1会变成什么呢?
我们还是通过一个代码来分析:

#include<stdio.h>
int main()
{unsigned int a = 0;a--;printf("%u", a);//注意使用 %u 占位符return 0;
}

测试
可以看到,a变成了 unsigned int 的最大值,所以上面的循环也是一个死循环,会不停地打印 i 的值。
代码二
练习六

#include <stdio.h>
//X86环境 小端字节序
int main()
{int a[4] = { 1, 2, 3, 4 };int* ptr1 = (int*)(&a + 1);int* ptr2 = (int*)((int)a + 1);printf("%x,%x", ptr1[-1], *ptr2);return 0;
}

关于ptr1,在指针系列中我已经讲解过,这里只做简要说明,不明白可以看我的指针系列文章,&a+1跳过整个数组,再强制类型转换为int*ptr1[-1]就是取ptr1 的上一个数字,也就是 4,按照16进制打印,还是4.
我们重点来看 ptr2,首先将 a强制类型转换为int,这里a是指数组的首元素的地址,假设是0x00115511,再+1得到0x00115512,再强制类型转换为int*,也就是相对原来的位置,向后走了一个字节,那么此时ptr2是多少?
我们画图来分析:
ptr2
那么此时的ptr2就是0x02000000

3. 浮点数在内存中的存储

浮点数表示的范围:float.h中定义
常见的浮点数:3.14159、1E10等,浮点数家族包括: float、double、long double 类型。

3. 1 一个代码

#include <stdio.h>
int main()
{int n = 9;float* pFloat = (float*)&n;printf("n的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);*pFloat = 9.0;printf("num的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);return 0;
}

输出结果为:
输出结果
上面的代码中, num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别
这么大?

3. 2 浮点数的存储

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:
V = (−1) S * M ∗ 2E
其中:
(−1) S 表示符号位,当S=0,V为正数;当S=1,V为负数
M 表示有效数字,M是大于等于1,小于2的
2E 表示指数位

举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01x2^2。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的 -5.0,写成二进制是-101.0,相当于-1.01x22。那么,S=1,M=1.01,E=2。

IEEE 754规定:
对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M

float:
float
double:
double

3. 2. 1 浮点数存的过程

IEEE754 对有效数字M和指数E,还有一些特别规定。

前面说过,1 ≤ M < 2 ,也就是说,M可以写成1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取借范围为0 ~ 255;如果E为11位,它的取值范围为0 ~ 2047。
但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001

3. 2. 2 浮点数取的过程

指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效
数字M前加上第一位的1。
比如:0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还
原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)

3. 3 题目解析

先看第1环节,为什么 9 还原成浮点数,就成了 0.000000
9 以整型的形式存储在内存中,得到如下二进制序列:

0000 0000 0000 0000 0000 0000 0000 1001

首先,将 9的二进制序列按照浮点数的形式拆分,得到第一位符号位s=0,后面8位的指数
E=00000000,最后23位的有效数字M=000 0000 0000 0000 00001001
由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:

V=(-1)^0 x 0.00000000000000000001001x2^(-126)=1.001x2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000

再看第2环节,浮点数9.0,为什么整数打印是1091567616
首先,浮点数9.0等于二进制的1001.0,即换算成科学计数法是:1.001x2^3
所以:9.0 = (-1)0*(1.001)*23
那么,第一位的符号位S=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,
10000010
所以,写成二进制形式,应该是S+E+M,即

0 10000010 001 0000 0000 0000 0000 0000

这个32位的二进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是
1091567616

谢谢你的阅读,喜欢的话来个点赞收藏评论关注吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/388677.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ctfshow-web入门-sql注入(web171-web175)

目录 1、web171 2、web172 3、web173 4、web174 5、web175 1、web171 单引号测一下&#xff0c;报错 -- 闭合后回显正常 也可以用 # &#xff0c;不过需要 URL 编码 成功闭合之后&#xff0c;先判断下字段数&#xff1a; 1 order by 3-- 3 的时候正常 4 的时候报错&am…

C++必修:STL之vector的了解与使用

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;C学习 贝蒂的主页&#xff1a;Betty’s blog 1. C/C中的数组 1.1. C语言中的数组 在 C 语言中&#xff0c;数组是一组相同类型…

泰迪智能科技AI大模型某医院合作案例介绍

泰迪智能科技AI大模型支持以ChatGLM2-6B、Baichuan-13B、Qwen14B和文心一言等多种大语言模型为底座&#xff0c;实现基于特定领域数据、面向智能客服、问答系统、自动摘要、智能打标、内容创作、信息抽取等应用场景的模型微调、评估和推理&#xff0c;为业务智能升级和价值挖掘…

【C++从小白到大牛】类和对象

目录 一、面向过程和面向对象初步认识 二、类的引入 三、类的定义 类的成员函数两种定义方式&#xff1a; 1. 声明和定义全部放在类体中 2. 类声明放在.h文件中&#xff0c;成员函数定义放在.cpp文件中 成员变量命名规则的建议&#xff1a; 四、类的访问限定符 【访问限…

本地部署持续集成工具Jenkins并配置公网地址实现远程自动化构建

文章目录 前言1. 安装Jenkins2. 局域网访问Jenkins3. 安装 cpolar内网穿透软件4. 配置Jenkins公网访问地址5. 公网远程访问Jenkins6. 固定公网地址 前言 本文主要介绍如何在Linux CentOS 7中安装Jenkins并结合cpolar内网穿透工具实现远程访问管理本地部署的Jenkins服务. Jenk…

大模型算法面试题(十八)

本系列收纳各种大模型面试题及答案。 1、P-tuning v2 思路、优缺点是什么 P-tuning v2是清华大学自然语言处理实验室&#xff08;THUDM&#xff09;等研究机构提出的一种新的预训练模型优化方法&#xff0c;主要关注如何通过动态构建任务相关的提示序列来引导预训练模型进行更…

【数据结构进阶】手撕红黑树

&#x1f525;个人主页&#xff1a; Forcible Bug Maker &#x1f525;专栏&#xff1a; C || 数据结构 目录 &#x1f308;前言&#x1f525;红黑树的概念&#x1f525;手撕红黑树红黑树结点的定义红黑树主体需要实现的成员函数红黑树的插入findEmpty和Size拷贝构造析构函数和…

Redis和Mysql如何保持数据一致性

一般情况下&#xff0c;Redis是用来实现应用和数据库之间读操作得缓存层&#xff0c;主要目的是减少数据库IO&#xff0c;还可以提升数据的IO性能。 当应用程序需要去读取某个数据时&#xff0c;会首先尝试去Redis里面加载&#xff0c;如果命中就直接返回&#xff0c;如果没有…

C++ 操作Git仓库

代码 #include "common.h" #include "args.c" #include "common.c"enum index_mode {INDEX_NONE,INDEX_ADD };struct index_options {int dry_run;int verbose;git_repository* repo;enum index_mode mode;int add_update; };/* Forward declar…

vue项目Nginx部署启动

1.vue打包 &#xff08;1&#xff09;package.json增加打包命令 "scripts": {"dev": "webpack-dev-server --inline --progress --config build/webpack.dev.conf.js --host 10.16.14.110","start": "npm run dev","un…

Halcon 边缘提取(亚像素)

Halcon提供多种边缘提取算法。像素提取方法有常用的边缘提取算子或深度学习分割模型等。考虑到精度问题可能需要提取亚像素边缘。当然也可以提取轮廓&#xff1a;线、圆、椭圆等。本文只讨论提取轮廓。 1 基本概念 正常情况下&#xff0c;无需特殊操作即可提取边缘轮廓。 1…

Linux-4:Shell编程——基础语法(50%-100%)

目录 前言 一、数组 1.数组定义 2.关联数组 3.数组长度 二、运算符 1.算术运算符 2.关系运算符 3.布尔运算符 4.逻辑运算符 5.字符串运算符 6.文件测试运算符 三、read命令 1.接收用户输入 2.开启转义 3. -p 输入提示 4. -s 静默模式 -t 设置超时时间 5.读取…

Fiddler学习笔记

目录 前言 简介 原理 界面 前言 测试可以使用fiddler工具&#xff0c;通过抓包的方式修改前端参数和模拟后端返回&#xff0c;快速定位缺陷。 简介 Fiddler是HTTP协议调试代理工具&#xff0c;可以记录并检查所有客户端和服务器之间的HTTP和HTTPS请求&#xff0c;允许监视…

算法训练1

01背包问题 背包状态方程----动态规划 二维dp 使用 f[i][j] max(f[i-1][j] ,f[i-1][j - w[i]] v[i]); 伪代码&#xff1a; int dp[100][100]; void test6() {int n; //装备数量int m; //背包容量int v[105], w[105]; //前面空间&#xff0c;后面价值for (int i 1; i &l…

ONLYOFFICE文档:为企业和开发者带来强大的文档编辑功能

本文给大家介绍一个开源项目&#xff1a;ONLYOFFICE文档&#xff0c;它能够为文档编辑、多人协作提供强大支持。无论你是个人使用&#xff0c;还是企业、商业开发&#xff0c;都能找到适合你的版本。 关于 ONLYOFFICE 文档 ONLYOFFICE 文档是一套功能强大的文档编辑器&#x…

微信小程序获取AppSecret的步骤

文章目录 微信小程序获取AppSecret的步骤&#xff1a;注意&#xff1a; 微信公众平台 小程序的密钥&#xff08;或称为AppSecret&#xff09;是用于加密解密、验证服务器身份等安全操作的敏感信息。不同的平台&#xff08;如微信小程序、支付宝小程序、百度智能小程序等&am…

vulhub:Apache解析漏洞apache_parsing

在Apache1.x/2.x中Apache 解析文件的规则是从右到左开始判断解析&#xff0c;如果后缀名为不可识别文件解析&#xff0c;就再往左判断。如 1.php.xxxxx 漏洞原理 Apache HTTPD 支持一个文件拥有多个后缀&#xff0c;并为不同后缀执行不同的指令。比如如下配置文件 AddType te…

【C#】.net core 6.0 webapi 使用core版本的NPOI的Excel读取数据以及保存数据

欢迎来到《小5讲堂》 这是《C#》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解。 温馨提示&#xff1a;博主能力有限&#xff0c;理解水平有限&#xff0c;若有不对之处望指正&#xff01; 目录 背景读取并保存NPOI信息NPOI 插件介绍基本功能示例代码写入 Excel 文件…

算法小白的进阶之路(力扣1~5)

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…

花几千上万学习Java,真没必要!(三十九)

1、BufferedReader的使用&#xff1a; 测试代码&#xff1a; package test.com; import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.util.ArrayList; import java.util.List; public class FileReadToList { pu…