设施农业“AutoML“时代:大模型自动调参,让农业算法模型更简单易用

(于景鑫 北京市农林科学院智能装备技术研究中心)设施农业是现代农业的重要发展方向,但在数字化、智能化的进程中仍面临诸多挑战。传统的农业算法模型虽然可以为设施农业提供一定的决策支持,但在实际应用中往往受限于参数调优复杂、模型泛化能力差等因素。随着人工智能技术的飞速发展,尤其是大语言模型(LLM)和自动化机器学习(AutoML)的兴起,为突破这一瓶颈带来了新的曙光。本文将深入探讨LLM和AutoML在设施农业中的应用前景,揭示大模型如何通过自动调参,让农业算法模型的开发和使用变得更加简单易行,为设施农业的智能化升级赋能。

44581b5d49e15299b2b1809f6c548f53.jpeg

一、设施农业的"智能化困境"

设施农业作为现代农业的重要组成部分,涉及温室大棚、植物工厂等多种形式,对农业生产的环境调控、病虫害防治等方面提出了更高的要求。传统的农业生产管理主要依赖人工经验,难以适应设施农业规模化、集约化的发展需求。为此,业界开始尝试引入各类农业算法模型,希望通过数据驱动的方式来优化农事决策。

然而,农业场景的复杂多变性,导致通用算法模型难以直接适用。为了获得理想的性能,往往需要针对不同设施、不同作物,甚至不同生长阶段,对算法模型进行反复的调整和优化。这种参数调优过程不仅耗时耗力,还需要较高的数据科学和领域知识,使得农业算法模型的实际应用举步维艰。

此外,由于缺乏有效的迁移学习机制,针对特定设施作物调优得到的模型,难以推广至其他类似场合。这种泛化能力的不足,也大大限制了农业算法模型的实用性。

二、大模型来了,农业算法的"私人订制"时代

大语言模型(Large Language Model,LLM)是近年来人工智能领域的重大突破,代表模型如GPT-3、PaLM等,具有强大的自然语言理解和生成能力。它们通过海量语料的预训练,可以从文本数据中学习到丰富的知识和逻辑规律。更重要的是,LLM具备了初步的推理和决策能力,可以根据具体任务的需求,从知识库中高效检索和组织信息。

这一特性为农业算法模型的设计和优化带来了新的思路。试想,如果我们将温室环境监测、作物长势观测等农业数据,转化为LLM可以理解的文本形式,那么就可以利用LLM强大的语义理解能力,自动归纳农事活动与作物响应间的内在联系。进而,LLM还可以根据农艺专家的经验总结,自动生成优化农业算法模型的建议,为算法模型的设计提供"私人定制"服务。

例如,针对番茄种植的设施农业场景,我们可以将不同生育期的温湿度、光照、二氧化碳浓度等环境参数,以及灌溉施肥记录、病虫害发生状况等农事操作数据,按照一定格式组织成文本。同时,再将番茄产量和品质评估结果也转化为文本标签。然后,用这些文本数据去fine-tune预训练的LLM,使其学会从环境和农事因素中,判断番茄生长发育和产量品质的关联规律。

当我们需要优化番茄种植的农业算法模型时,就可以用自然语言向LLM描述具体需求,如"如何通过调整温室通风和灌溉策略,在不影响产量的前提下提升番茄糖度?"LLM可以根据学习到的种植规律,结合农艺专家的经验总结,自动给出调整建议,例如"可以考虑在番茄成熟前两周适当减少灌溉量,并加强温室通风,使光合作用产物更多地向果实转移"。这些建议可以直接指导农业算法模型的优化方向,大大简化算法迭代优化的过程。

aedeab5c21ff30475460789e8eae125d.jpeg

三、AutoML来了,农业算法的"自动驾驶"时代

光有针对性的优化方向还不够,农业算法模型还需要经过大量的调参和测试,才能真正适应具体的应用场景。传统的人工调参方式费时费力,还难以探索到最优的参数组合。这时,自动化机器学习(Automated Machine Learning,AutoML)技术就成为了农业算法模型的"自动驾驶"引擎。

AutoML利用机器学习自身的能力,来自动化机器学习的开发流程,最大限度减少人工参与。具体来说,它可以自动完成数据预处理、特征工程、算法选择、超参数优化等一系列任务,只需输入原始的农业数据,就能输出性能优化的算法模型。

以水肥一体化管理为例,我们可以将作物生长监测数据(叶面积指数、叶绿素含量等)、土壤环境数据(水分、养分含量等)以及灌溉施肥记录输入AutoML平台,并设定提升水肥利用效率的优化目标。然后AutoML会自动生成多种候选特征,如叶面积指数的一阶导数、土壤水分与施肥量的比值等,筛选出与优化目标最相关的特征子集。接着,它会从一个算法模型库中(如随机森林、支持向量机、神经网络等),自动选取适合当前任务的算法,并通过启发式搜索或强化学习等策略,高效优化算法的超参数(如树的数量、网络层数等)。

经过这一系列"自动驾驶"式的优化,AutoML最终可以输出一个定制化的农业算法模型,实现灌溉施肥策略的智能优化。与人工调参相比,AutoML可以在更短时间内探索到更优的模型,而且避免了人为设计偏好的影响,能够发掘出非常规的特征组合和算法配置,充分利用数据中蕴含的信息。

45afa70458fe97835d1eb11b5fe6ecf8.jpeg

四、LLM+AutoML,农业算法模型的"自动炼丹"炉

大语言模型负责高层决策指导,AutoML实现自动化执行优化,二者的结合可以说是农业算法模型开发的"自动炼丹"炉。具体而言,LLM相当于一位智能的炼丹师傅,可以根据农业生产的需求,提出切实可行的算法模型设计方案。而AutoML则是一套全自动的炼丹设备,可以根据LLM给出的配方,快速调试出满足要求的成品算法。

以育苗移栽机器人的视觉系统为例,我们首先可以将大量幼苗图像和生长状态标注输入LLM,训练它掌握苗期特征与生长质量的关联性。当需要优化育苗移栽的视觉算法时,就可以用自然语言向LLM提出要求,如"在保证漏检率不高于0.1%的前提下,尽量降低算法的计算复杂度"。LLM会根据苗期生长规律,给出调整建议,例如"可以考虑在图像预处理阶段,先提取幼苗轮廓和颜色特征,再用少量形态和纹理特征进行辅助判别,以减少不必要的计算量"。

接下来,AutoML就可以自动将LLM的调整建议落实到视觉算法的优化中。它会从海量育苗图像数据中,自动筛选出最能反映苗期生长状态的形态、颜色、纹理特征,搭配适合边缘计算场景的轻量化神经网络模型,并自动探索最优的网络结构和超参数。最终,AutoML将输出一个"私人定制"的育苗视觉模型,兼顾了识别准确率和计算效率,完美符合LLM的优化要求。

9831523c37ab6ae66ca16c3763c74dac.jpeg

五、LLM+AutoML在农业领域的进一步拓展

除了农业算法模型的开发优化,LLM+AutoML还可以在农业领域的其他环节发挥重要作用。例如,利用LLM从海量农业科研文献、行业报告等非结构化数据中,自动提取农作物种植和设施管理的关键知识,构建农业知识图谱。再通过AutoML将知识图谱嵌入预测性维护、产品溯源等各类智慧农业应用中,就可以实现由知识驱动的全流程智能优化。

此外,LLM+AutoML与农业物联网的结合,也是一个值得期待的方向。物联网设备产生的海量多模态数据,可以用于增强LLM的语义理解能力。反过来,LLM也可以通过自然语言交互,赋予农业物联网设备更加灵活智能的控制能力。同时,AutoML可以持续优化物联网数据分析和控制决策的算法模型,使得农业物联网系统能够不断自我进化、自我完善。

cf3a4898d61f94e75360a23e9f0c5cc2.jpeg

随着LLM和AutoML技术的持续演进,以及与农业领域知识的进一步融合,一个全新的"智慧农业大脑"正在徐徐展开。在不远的未来,每一个设施农场都将拥有一位得力的智能助手,它可以用认知科学和机器智能,去解构农业生产的复杂规律,并用自动化、精细化的算法模型,去驱动一系列农事设备,实现农业全流程的最优控制。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/390025.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实例分割-Yolact/Yolact++训练自己数据集

前言 本文主要用于记录实例分割模型yolact和yolact的环境配置,以及成功训练自己数据集的整个过程~ 注意:这里要重点提醒一下,DCNv2对RTX系列不友好,我第一次使用4090服务器,编译持续有问题,被迫放弃&#…

window安装elasticsearch和可视化界面kibana

ElasticSearch 官网下载zip安装包并解压 Elasticsearch:官方分布式搜索和分析引擎 | Elastic 修改配置文件 改选项是指定ssl访问还是普通http访问 不改的话使用http访问不了,得使用https 浏览器访问 localhost:9200 Kibana Download Kibana Free |…

Android Listview notifyDataSetChanged() 不起作用

private ArrayList<Map<String, String>> data new ArrayList<Map<String, String>>(); private ArrayList<Map<String, String>> delivered_data new ArrayList<Map<String, String>>(); 如果直接将arraylist 的数据直接…

机器学习-31-多变量异常检测LOF算法(实战)

一文读懂异常检测 LOF 算法(Python代码) 1 LOF算法 一个经典的异常检测算法:局部离群因子(Local Outlier Factor),简称LOF算法。 Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et. al. 2000), 文章发表于SIGMOD 2000, 到目前已经有3000+的引用。 在LOF之前…

人大高瓴发布Think-on-Graph 2.0,基于知识图的大模型推理再升级!

经常参加高考的朋友可能会体会到&#xff0c;比起死记硬背知识点&#xff0c;将知识整理成脉络往往会获得事半功倍的效果。其实对于大模型来说也是如此&#xff0c;哪怕被允许“开卷作答”&#xff0c;即通过检索增强&#xff08;Retrieval-augmented generation&#xff0c;RA…

HCIP学习作业一 | HCIA复习

要求&#xff1a; R1-R2-R3-R4-R5 RIP 100 运行版本2 R6-R7 RIP 200 运行版本1 1.使用合理IP地址规划网络&#xff0c;各自创建环回接口 2.R1创建环回 172.16.1.1/24 172.16.2.1/24 172.16.3.1/24 3.要求R3使用R2访问R1环回 4.减少路由条目数量&#xff0c;R1-R2之间…

【AD域】搭建AD域服务器

环境 服务器&#xff1a;Windows Server 2016 Standard&#xff0c;版本1607 准备 1、设置主机名 2、配置静态IP地址 3、以本地管理员权限登录服务器 步骤 1、在服务器添加【Active Directory】域服务功能 2、AD域服务器配置

fastjson-小于1.2.47绕过

参考视频&#xff1a;fastjson反序列化漏洞3-<1.2.47绕过_哔哩哔哩_bilibili 分析版本 fastjson1.2.24 JDK 8u141 分析流程 分析fastjson1.2.25更新的源码&#xff0c;用JsonBcel链跟进 先看修改的地方 fastjson1.2.24 if (key JSON.DEFAULT_TYPE_KEY && !…

校园课程助手【4】-使用Elasticsearch实现课程检索

本节将介绍本项目的查询模块&#xff0c;使用Elasticsearch又不是查询接口&#xff0c;具体流程如图所示&#xff08;如果不了解Elasticsearch可以使用sql语句进行查询&#xff09;&#xff1a; 这里是两种方法的异同点&#xff1a; Mysql&#xff1a;擅长事务类型操作&#…

PHP苹果 V X iPhone微商i o s多分开V X语音转发密友朋友圈一键跟圈软件

苹果VX神器&#xff01;iPhone微商必备&#xff1a;ios多开、VX语音转发、密友朋友圈一键跟圈软件大揭秘&#xff01; 一、iOS多开新境界&#xff0c;工作生活两不误&#xff01; 你是不是也烦恼过&#xff0c;想要在工作号和生活号之间自由切换&#xff0c;却因为iPhone的限制…

【C++程序设计】——利用数组处理批量数据(一)

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-削好皮的Pineapple! &#x1f468;‍&#x1f4bb; hello 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 削好皮的Pineapple! 原创 &#x1f468;‍&#x1f4…

【LeetCode每日一题】盛最多水的容器

思路 标签:双指针&#xff0c;贪心 分析&#xff1a; 首先选两条线为容器的两端&#xff0c;盛水的高度取决于高度小的那条线&#xff0c;此时在两条线中间选一条线&#xff0c;有两种情况&#xff0c;如果区间内某条线比两端高度小的那条线还要小&#xff0c;此时宽度和高度…

PLC控制器-耦合变压器的作用

华强盛电子导读&#xff1a;PLC耦合变压器 &#xff0c;前面199中间2643后面0038完。 耦合变压器在电子电路中扮演着重要的角色&#xff0c;尤其是在模拟电路的构建中。它的主要作用可以从以下几个方面进行详细阐述&#xff1a; 1. **信号耦合**&#xff1a; - 耦合变压器…

C++ : namespace,输入与输出,函数重载,缺省参数

一&#xff0c;命名空间(namespace) 1.1命名空间的作用与定义 我们在学习c的过程中&#xff0c;经常会碰到命名冲突的情况。就拿我们在c语言中的一个string函数来说吧&#xff1a; int strncat 0; int main() {printf("%d", strncat);return 0; } 当我们运行之后&…

大型赛事5G室内无线网络保障方案

大型活动往往才是国家综合实力的重要体现&#xff0c;其无线网络通信保障工作需融合各类新兴的5G业务应用&#xff0c;是一项技术难度高、方案复杂度高的系统工程。尤其在活动人员复杂、现场突发情况多、网络不稳定等情况下&#xff0c;如何形成一套高效、稳定的应急通信解决方…

C++入门级文章

一、一个用于查询C标准库内函数、操作符等的链接 https://legacy.cplusplus.com/reference/ 声明&#xff1a;该文档并非官方文档&#xff0c;但其具有易于查询和使用的优势&#xff0c;足够日常使用。 二、C的第一个程序 1、C语言中的语法在C中仍旧适用&#xff0c;首先我们来…

无人机无刷电机技术详解及选型

1. 技术原理 无人机无刷电机&#xff08;Brushless DC Motor, BLDC&#xff09;是现代无人机动力系统的核心部件&#xff0c;其工作原理基于电磁感应和换向技术&#xff0c;实现了无需物理接触即可持续旋转的高效率动力输出。与传统有刷电机相比&#xff0c;无刷电机通过电子换…

Java入门、进阶、强化、扩展、知识体系完善等知识点学习、性能优化、源码分析专栏分享

场景 作为一名Java开发者&#xff0c;势必经历过从入门到自学、从基础到进阶、从学习到强化的过程。 当经历过几年企业级开发的磨炼&#xff0c;再回头看之前的开发过程、成长阶段发现确实是走了好多的弯路。 作为一名终身学习的信奉者&#xff0c;秉承Java体系需持续学习、…

【C++高阶】:C++11的深度解析上

✨ 心似白云常自在&#xff0c;意如流水任东西 &#x1f30f; &#x1f4c3;个人主页&#xff1a;island1314 &#x1f525;个人专栏&#xff1a;C学习 &#x1f680; 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f4…

Spring Cache框架(AOP思想)+ Redis实现数据缓存

文章目录 1 简介1.1 基本介绍1.2 为什么要用 Spring Cache&#xff1f; 2 使用方法2.1 依赖导入&#xff08;Maven&#xff09;2.2 常用注解2.3 使用步骤2.4 常用注解说明1&#xff09;EnableCaching2&#xff09;CachePut3&#xff09;Cacheable4&#xff09;CacheEvict 3 注意…