【踩坑】pytorch中的索引与copy_结合不会复制数据及其解决方案

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~

目录

背景知识

实验验证

结论分析

错误案例

处理方法

注意事项

附加说明

基本索引返回视图

高级索引返回副本

赋值操作都是原地操作


以下内容若有错误,欢迎指出!

背景知识

        我们现在知道以下几个知识点:

  1. copy_函数:pytorch中变量的copy_函数,可以将变量inplace地复制到另一个变量中。比如buffer.copy_(a),将a中的数据直接复制到了buffer中。
  2. 视图(View): 视图是指不复制数据的情况下,返回一个与原始张量共享内存的张量。例如,切片操作通常会返回一个视图。
  3. 副本(Copy): 副本是指返回一个新的张量,包含了原始张量的数据,但不共享内存布尔掩码索引返回的就是这样的副本。
  4. PyTorch和Numpy中的情况:在通过索引访问张量的内容时,PyTorch 遵循 Numpy 的行为,即基本索引返回视图,而高级索引返回副本。通过基本索引或高级索引进行的赋值都是原地操作
  5. 切片():切片由中括号冒号组成,如[:10]、[2:10]、[2:]。
  6. 基本索引:使用整数切片来访问数组的元素。
  7. 高级索引:指的是使用整数数组布尔数组或者其他序列来访问数组的元素。相比于基本索引,高级索引可以访问到数组中的任意元素,并且可以用来对数组进行复杂的操作和修改。
来自:https://cloud.tencent.com/developer/article/1755699
来自:PyTorch入门笔记-索引和切片

        好了,现在有一个问题,如果结合索引与copy_操作,那是否会复制成功?

实验验证

        答案是,不会成功。我们可以用代码测试一下:

import torchprint('>> 使用=号直接复制 <<')
buff = torch.arange(5)
mask = [True, False, False, True, False]
print('输出原始变量:', buff)
print('输出索引掩码:', mask)
print('输出索引变量:', buff[mask])
buff[mask][0] = 10
print('索引变量修改:', buff)
buff[mask] = torch.tensor([8, 9])
print('索引变量赋值:', buff)print('*' * 50)buff = torch.arange(5)
print('输出原始变量:', buff)
print('输出切片索引:', '1:3')
buff_indices = buff[1:3]
print('输出切片变量:', buff[buff_indices])
buff[1:3][0] = 10
print('切片变量修改:', buff)
buff[1:3] = torch.tensor([8, 9])
print('切片变量赋值:', buff)print('=' * 50)print('>> 使用copy_原地复制 <<')buff = torch.arange(5)
mask = [True, False, False, True, False]
print('输出原始变量:', buff)
print('输出索引掩码:', mask)
print('输出索引变量:', buff[mask])
buff[mask].copy_(torch.tensor([8, 9]))
print('索引变量copy:', buff)print('*' * 50)buff = torch.arange(5)
print('输出原始变量:', buff)
print('输出切片索引:', '1:3')
print('输出切片变量:', buff[1:3])
buff[1:3].copy_(torch.tensor([8, 9]))
print('切片变量copy:', buff)

输出结果(改变的地方加粗了):

>> 使用=号直接复制 <<
输出原始变量: tensor([0, 1, 2, 3, 4])
输出索引掩码: [True, False, False, True, False]
输出索引变量: tensor([0, 3])
索引变量修改: tensor([0, 1, 2, 3, 4])
索引变量赋值: tensor([8, 1, 2, 9, 4])
**************************************************
输出原始变量: tensor([0, 1, 2, 3, 4])
输出切片索引: 1:3
输出切片变量: tensor([1, 2])
切片变量修改: tensor([ 0, 10,  2,  3,  4])
切片变量赋值: tensor([0, 8, 9, 3, 4])
==================================================
>> 使用copy_原地复制 <<
输出原始变量: tensor([0, 1, 2, 3, 4])
输出索引掩码: [True, False, False, True, False]
输出索引变量: tensor([0, 3])
索引变量赋值: tensor([0, 1, 2, 3, 4])
**************************************************
输出原始变量: tensor([0, 1, 2, 3, 4])
输出切片索引: 1:3
输出切片变量: tensor([1, 2])
切片变量赋值: tensor([0, 8, 9, 3, 4])

结论分析

        在PyTorch中,当你使用布尔掩码或索引来访问张量时,通常会创建一个新的张量,而不是对原始张量进行原地修改。在PyTorch中,切片操作通常会返回一个视图,而不是数据的副本。这意味着切片操作返回的张量和原始张量共享相同的内存。因此,对切片后的张量进行的任何修改都会影响到原始张量。与此相对,布尔掩码索引返回的是数据的副本,因此修改索引得到的张量不会影响原始张量。

        因此可见,由于索引返回的是新张量,而copy_是原地复制,因此对于原来的变量来说并没有影响,所以不会复制成功

        而=号这个赋值操作,不管是基本索引还是高级索引,由于底层都是对张量的原地操作,因此确实可以赋值成功。

错误案例

        根据以上内容就知道,有时候我们如果这样用,那就是错的:

buff = torch.arange(5)
mask = [True, False, False, True, False]
buff[mask].copy_(torch.tensor([8, 9]))

处理方法

        如果确实想结合索引和copy_一起用怎么办?那么可以试试masked_scatter_

torch.Tensor.masked_scatter_ — PyTorch 2.4 documentation

注意事项

  1. 对于 [1,2,3] 这种,仍然是位置索引,并不是切片,所以效果等同于上面的布尔索引。通常,PyTorch中的张量索引使用逗号分隔的整数索引来指定每个维度上的具体位置。如果你想对一个一维张量进行切片,应该使用冒号:来指定范围。

附加说明

        对于背景知识里的第4点,我们也来通过代码验证一下。

基本索引返回视图

基本索引包括标量索引、切片操作和整数索引。PyTorch通常会返回原始张量的视图,这意味着它们共享相同的底层数据。因此,对视图的修改会影响原始张量。例如:

import torcha = torch.tensor([1, 2, 3, 4])
b = a[:2]  # 基本索引,b 是 a 的视图
b[0] = 10  # 修改视图会影响原始张量
print(a)   # 输出: tensor([10,  2,  3,  4])

高级索引返回副本

高级索引包括使用布尔数组、整数数组或多维索引。PyTorch和NumPy一样,高级索引会返回一个新的张量,即副本,不与原始数据共享内存。因此,对副本的修改不会影响原始张量。例如:

import torcha = torch.tensor([1, 2, 3, 4])
indices = torch.tensor([0, 2])
b = a[indices]  # 高级索引,b 是 a 的副本
b[0] = 10       # 修改副本不会影响原始张量
print(a)        # 输出: tensor([1, 2, 3, 4])
print(b)        # 输出: tensor([10,  3])

赋值操作都是原地操作

无论是通过基本索引还是高级索引,赋值操作都是原地操作,这意味着它们会直接修改原始张量的内容。例如:

  1. 基本索引赋值

    a = torch.tensor([1, 2, 3, 4])
    a[:2] = torch.tensor([10, 20])  # 原地修改 a
    print(a)  # 输出: tensor([10, 20,  3,  4])
    
  2. 高级索引赋值

    a = torch.tensor([1, 2, 3, 4])
    indices = torch.tensor([0, 2])
    a[indices] = torch.tensor([10, 20])  # 原地修改 a
    print(a)  # 输出: tensor([10,  2, 20,  4])
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/393367.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重生之我 学习【数据结构之顺序表(SeqList)】

⭐⭐⭐ 新老博友们&#xff0c;感谢各位的阅读观看 期末考试&假期调整暂时的停更了两个多月 没有写博客为大家分享优质内容 还容各位博友多多的理解 美丽的八月重生之我归来 继续为大家分享内容 你我共同加油 一起努力 ⭐⭐⭐ 数据结构将以顺序表、链表、栈区、队列、二叉树…

索尼相机SD卡找不到视频怎么办?提供全面解决方案

在使用索尼相机拍摄美好瞬间时&#xff0c;SD卡作为存储介质&#xff0c;承载着珍贵的视频和照片。然而&#xff0c;有时我们可能会遇到SD卡中视频文件无法找到的问题&#xff0c;这无疑让人倍感焦虑。本文旨在为大家提供一套全面的解决方案&#xff0c;希望帮助大家快速找回丢…

探索Linux世界之Linux环境开发工具的使用

一、yum -- Linux软件包管理器 1、什么是yum yum(Yellow dog Updater, Modified)&#xff1a; 是Linux下非常常用的一种包管理器. 主要应用在Fedora, RedHat, Centos等发行版上。 在Linux上安装软件的方式&#xff1a; 源代码直接安装&#xff1a;在Linux下安装软件, 一个通…

The Llama 3 Herd of Models 第8部分语音实验部分全文

第1,2,3部分,介绍、概览、预训练 第4部分,后训练 第5部分,结果 第6部分,推理 第7部分,视觉实验 8 Speech Experiments 我们进行了实验来研究将语音功能集成到Llama 3中的组合方法,类似于我们用于视觉识别的方法。在输入端,一个编码器,连同一个适配器,被并入处理语…

uniapp vue3 转换华为鸿蒙(以及问题一些解决方案)

主要是从 Windows系统配置 、配置离线SDK和DevEco-Studio、HBuilderX、三方面进行配置。 因为我也是之前写小程序的用uniapp vue3 写的看官网&#xff08;uni-app 开发鸿蒙应用 | uni-app官网&#xff09;的时候看到vue3 uniapp 写法可以转换华为鸿蒙开发&#xff0c;我就自己来…

为什么要用分布式锁

单应用中,如果要确保多线程修改同一个资源的安全性 加synchronized就可以了 但是性能不高 而mybatis-plus的乐观锁就可以很好的解决这类问题 但是这样的锁机制,只在单应用中有效 试想,在分布式下,有没有可能出现多个应用中的线程同时去修改同一个数据资源的并发问题 例如A …

Rstudio Server常见问题处理手册

一.开头 上面这个界面是不是非常熟悉&#xff1f;Rstudio 死亡圈圈一般发生在输入账号密码后进入Rstudio的时候&#xff0c;如果之前运行过大任务&#xff0c;有可能会出现这种情况。Rstudio常见问题我们如何排查和处理,本文章将给你一些思路和处理方式。 【ads】如果您不想被…

【开源】嵌入式Linux(IMX6U)应用层综合项目(4)--音乐播放器APP

1.简介 此文章并不是教程&#xff0c;只能当作笔者的学习分享&#xff0c;只会做一些简单的介绍&#xff0c;其他的各位结合着代码和运行现象自己分析吧&#xff0c;相信通过函数名和注释&#xff0c;基本上是不难看懂代码的&#xff0c;其中涉及到的一些技术栈&#xff0c;也…

图论(强联通分量)

在图论中&#xff0c;特别是在讨论有向图&#xff08;Directed Graph&#xff09;时&#xff0c;我们常常需要了解图的结构特性&#xff0c;比如强联通分量&#xff08;Strongly Connected Components, SCC&#xff09;。了解强联通分量中的各种边对于理解图的整体结构以及某些…

Redisson可重入锁原理(基于黑马视频总结,保姆级)

上一篇文章我们基于redis的set nx ex 命令以及Lua脚本实现了基本的分布式锁&#xff0c;但是还存在一下几点问题。于是又引出了redisson。 为什么基于SETNX的分布式锁无法实现可重入 先在method1中获取锁&#xff0c;获取成功后又调用method2&#xff0c;而method2内部也会获取…

spring+SSM+Mybatis面试题(上)(30道)

目录 1. 何为Spring Bean容器?Spring Bean容器与Spring IOC 容器有什么不同吗?2. Spring IOC 如何理解?3. Spring DI 如何理解?4. Spring 中基于注解如何配置对象作用域?以及如何配置延迟加载机制?1.配置作用域需要注解Scope(“Singleton”)2.开启延迟加载&#xff1a;La…

脚本:自动生成精准的Oracle AWR报告

很多朋友把AWR报告发过来让我帮忙分析Oracle数据库的性能&#xff0c;但很多报告都有一个共同的缺陷&#xff1a;就是这些报告覆盖的时间范围太广&#xff0c;导致性能问题的数据被严重稀释。 英文原文&#xff1a;Script: Generating Focused AWR Reports 为了解决这个问题&a…

完美解决pip命令版本冲突导致对应版本模块包无法安装的问题

解决步骤 使用pip更新/降低指定模块包命令格式降低pip自身至指定版本的命令再次换源安装指定模块包 在对 FasterNet 这篇论文源码复现过程中&#xff0c;我们首先需要安装相关依赖文件&#xff08; path/to/your/requirements.txt&#xff09; -extra-index-url https://down…

临床数据科学中如何用R来进行缺失值的处理(上)

在临床科研中&#xff0c;由于失访、无应答或记录不清等各种原因&#xff0c;经常会遇到数据缺失的问题。本文将深入探讨医学科研中数据缺失的成因、分类、影响以及应对方法&#xff0c;结合R语言的实际应用&#xff0c;为医学研究人员提供全面的解决方案。 一、认识缺失数据 …

【生成式人工智能-四-chatgpt的训练过程-pretrain预训练自督导式学习督导式学习】

大模型是怎么被训练出来的具有人类智慧的 阶段一训练-自我学习-具备知识训练资料self-supervised learning&#xff08;自督导式学习&#xff09; 阶段二-怎么让模型具备人的智慧supervised learning 督导式学习预训练pretrain为什么要用预训练的模型&#xff1f;Adapter逆向工…

红外遥控风扇——arduino

红外遥控风扇——arduino 本节课任务红外遥控红外遥控通信过程红外遥控套件红外遥控接线实现风扇的多种换挡方式用本节课所学的红外遥控&#xff0c;控制RGB彩灯变换颜色&#xff0c;至少配置4种 本节课任务 1、了解红外遥控技术在生活中的运用。 2、学会编程测试红外遥控器的…

WPF-实现多语言的静态(需重启)与动态切换(不用重启)

一、多语言切换&#xff08;需重启&#xff09; 1、配置文件添加Key <appSettings><add key"language" value"zh-CN"/></appSettings> 2、新增附加属性当前选择语言 public CultureInfo SelectLanguage{get > (CultureInfo)GetValu…

C#初级——List 容器

容器 在C#中&#xff0c;容器通常指的是用于存储和组织数据的集合类。 本文介绍的容器是动态数组&#xff1a;List<T> 内部使用数组来存储元素&#xff0c;当添加元素超出当前数组容量时&#xff0c;会自动调整大小&#xff08;扩容&#xff09;。 list容器 List<&g…

用数组表达双链表

大体思想跟单链表相同&#xff0c;只不过双链表每个节点有两个指向&#xff1a; 单链表只能指向一个节点(下一个节点) 而双链表可以指向两个节点(上下两个节点) 代码分析 1、定义 在这里没有定义head&#xff0c;直接让0号点是head&#xff0c;下标为1的点是最右边的 //e[i…

Spring Boot 中使用 JSON Schema 来校验复杂JSON数据

​ 博客主页: 南来_北往 系列专栏&#xff1a;Spring Boot实战 前言 在应用程序接口&#xff08;API&#xff09;的开发中&#xff0c;JSON作为一种数据交换格式被广泛利用。然而&#xff0c;对数据的结构和规则进行标准化是至关重要的&#xff0c;这正是JSON Schema发挥…