Nature Medicine:基于图像的深度学习和语言模型用于原发性糖尿病护理

首个糖尿病诊疗多模态大模型DeepDR-LLM已成功发表在Nature子刊。

这是全球首个面向糖尿病诊疗的视觉-大语言模型集成系统,结合了语言模型和基于眼底图像的深度学习技术。该系统旨在为基层医生提供个性化的糖尿病管理建议和辅助诊断结果,特别对中低收入国家具有重要意义。通过引入这一革命性的数字解决方案,希望显著改善基层医生处理糖尿患者和筛查视网膜病变水平。

此项工作由51家机构共同完成,包括上海交通大学医学院、清华大学医学院等单位。

Abstract

Primary diabetes care and diabetic retinopathy (DR) screening persist as major public health challenges due to a shortage of trained primary care physicians (PCPs), particularly in low-resource settings. Here, to bridge the gaps, we developed an integrated image–language system (DeepDR-LLM), combining a large language model (LLM module) and image-based deep learning (DeepDR-Transformer), to provide individualized diabetes management recommendations to PCPs. In a retrospective evaluation, the LLM module demonstrated comparable performance to PCPs and endocrinology residents when tested in English and outperformed PCPs and had comparable performance to endocrinology residents in Chinese. For identifying referable DR, the average PCP’s accuracy was 81.0% unassisted and 92.3% assisted by DeepDR-Transformer. Furthermore, we performed a single-center real-world prospective study, deploying DeepDR-LLM. We compared diabetes management adherence of patients under the unassisted PCP arm (n = 397) with those under the PCP+DeepDR-LLM arm (n = 372). Patients with newly diagnosed diabetes in the PCP+DeepDR-LLM arm showed better self-management behaviors throughout follow-up (P < 0.05). For patients with referral DR, those in the PCP+DeepDR-LLM arm were more likely to adhere to DR referrals (P < 0.01). Additionally, DeepDR-LLM deployment improved the quality and empathy level of management recommendations. Given its multifaceted performance, DeepDR-LLM holds promise as a digital solution for enhancing primary diabetes care and DR screening.

摘要:

目前,在资源匮乏地区缺乏训练有素的初级保健医生(PCP)仍然是一个主要公共卫生挑战,特别是在初级护理和视网膜筛查领域。为填补这一差距,本文开发了一个名为DeepDR-LLM的集成图像语言系统。该系统结合了大型语言模型(LLM模块)和基于图像的深度学习(DeepDR-Transformer),旨在为PCP提供个性化的糖尿管理建议。回顾性评估显示,在英文测试中,LLM模块与PCP和内分泌科住院医师表现相当;而在中文测试中优于PCP并与内分泌科住院医师相当。对于可转诊至专科进行进一步检查治理需求的DR患者,在无辅助时PCP平均准确率达到81.0%,而使用DeepDR-Transformer辅助后准确率达到92.3%。此外,我们还进行了一项单中心真实世界前景性调查,部署DeepDR-LLM,并比较无辅助组(n=397)与PCP+DeepDR-LLM组(n=372)患者关于遵循治理咨询情况发现:PCP+DeepDR-LLM组新被诊断出患有DN(DiabeticNephropathy)耐药时整个随访过程更好地展示出自我管控行为(P<0.05)。对需要转介至专业人员进一步检测治理需求的DR患者,使用DeepDR-Transformer辅助后更容易接受转介(P<0.01)。此外,部署DeepDR-LLM还提高了咨询质量和同理心水平。鉴于其多方面出色表现,DeepDR-LLM很可能成为增强初级护理和DR筛查数字解决方案。

Main

It has been estimated that more than 500 million people had diabetes worldwide in 2021, with 80% living in low- and middle-income countries (LMICs)1,2. The escalating prevalence imposes a substantial public health challenge, particularly in these low-resource settings1,3,4,5. In LMICs, insufficient healthcare resource and a lack of trained primary care physicians (PCPs) remain principal barriers, resulting in widespread underdiagnosis, poor primary diabetes management and inadequate and/or inappropriate referrals to diabetes specialist care4,6,7. This not only impacts on individual health outcomes but also has broader socioeconomic consequences4,8,9,10.

据估计,2021年全球有超过5亿人罹患糖尿病,其中80%居住在收入较低和中等的国家(LMICs)[1,2]。这种不断上升的发病率对公共卫生构成了巨大挑战,特别是在资源匮乏地区[1,3,4,5]。在LMICs中,医疗资源紧缺和缺乏受过培训的初级保健医师(PCPs)仍然是主要障碍,导致未诊断情况普遍存在、初级糖尿病管理不善以及对专科护理的转诊不足或不合适[4,6,7]。这不仅对个体健康结果产生影响,还会造成更广泛的社会经济后果[4,8,9,10]。

Diabetic retinopathy (DR) is the most common specific complication of diabetes, affecting 30–40% of individuals with diabetes11,12,13, and remains the leading cause of blindness in economically active, working-aged adults11,14,15. The presence of DR also signifies a heightened risk of other complications elsewhere (for example, kidney, heart and brain)16. Thus, regular DR screening has been universally recommended as a key part of primary diabetes care17. However, DR screening is often neglected in low-resource settings in LMICs owing to a scarcity of infrastructure, manpower and sustainable cost-effective DR screening programs.

糖尿病视网膜病变(DR)是最常见的糖尿病特定并发症,影响30-40%的患有糖尿病的人群11,12,13,并且仍然是经济活跃、工作年龄成人失明的主要原因11,14,15。DR存在还意味着其他部位(例如肾脏、心脏和大脑)并发症风险增加16。因此,定期进行DR筛查已被普遍推荐为初级糖尿病护理的关键部分17。然而,在低资源环境下,由于基础设施、人力资源和可持续性具有成本效益的DR筛查计划匮乏,往往忽视了DR筛查在低收入国家中不足之处。

Several digital technologies have emerged to address gaps in diabetes care and DR screening, including telemedicine18,19,20, artificial intelligence (AI)-assisted glucose monitoring and prediction21, retinal image-based deep learning (DL) models22,23,24 and the development of low-cost and portable retinal cameras25,26. However, these solutions often focus either on enhancing diabetes management or on providing DR screening but rarely integrate both important aspects for diabetes care. These current solutions also require sufficiently trained PCPs capable of utilizing these digital tools, understanding diabetes care, and referral guidelines for severe DR cases that require specialists interventions, but there are few trained PCPs in low-resource settings27.

近年来,出现了几种数字技术用于解决糖尿病护理和视网膜筛查的问题。这些技术包括远程医疗、人工智能辅助血糖监测和预测、基于视网膜图像的深度学习模型以及低成本便携式视网膜相机的开发。然而,目前存在一个问题,即这些解决方案要么专注于改善糖尿病管理,要么专注于提供视网膜筛查,并很少将两个重要方面结合起来进行综合处理。此外,在资源有限的环境中受过培训的初级保健医生(PCPs)数量较少,因此他们需要接受足够培训才能使用这些数字工具,并且还需要了解关于糖尿病护理和对重度DR(需专家干预)情况下转诊指南等相关知识。

Recently, large language models (LLMs)28,29,30,31, achieving natural language understanding and generation, have been developing rapidly and show promise in enhancing healthcare service delivery. LLMs have the potential to optimize patient monitoring, personalization of treatment plans, and patient education, potentially resulting in improved outcomes for patients with diabetes32,33,34 and retinal diseases35,36. However, while they perform well in answering some general medical queries31,37, current LLMs fall short in providing reliable and detailed management recommendations for major specific diseases31,38,39, such as diabetes.

近期,大型语言模型(LLMs)在自然语言理解和生成方面取得了迅猛发展,并显示出增强医疗服务交付的潜力。LLMs有望优化患者监测、个性化治疗计划和患者教育,从而可能改善糖尿病和视网膜疾病等患者的预后结果。然而,尽管它们在回答一些常见医学问题上表现良好,但目前的LLMs在提供针对特定主要疾病(如糖尿病)可靠且详细的管理建议方面还存在不足之处。

To address these interrelated gaps in diabetes care, we developed an innovative image–language system—DeepDR-LLM—which integrates an LLM module with an image-based DL module to offer a comprehensive approach for primary diabetes care and DR screening. Our system is tailored for PCPs, particularly those working in high-volume and low-resource settings. The DeepDR-LLM system comprises two core components: an LLM module and an image-based DL module, referred to as DeepDR-Transformer (Fig. 1). Our evaluation of DeepDR-LLM’s performance relied on four experiments outlined in Fig. 2a–d. First, we developed the LLM module by fine-tuning LLaMA38, an open-source LLM that used 371,763 real-world management recommendations from 267,730 participants. We then performed a head-to-head comparative analysis, where we examined the system’s LLM module’s proficiency in providing evidence-based diabetes management recommendations against that of LLaMA, PCPs and in-training specialists (endocrinology residents), with assessments conducted in both English and Chinese languages (Fig. 2a). Second, we trained and tested the performance of DeepDR-Transformer for referable DR detection, using multiethnic, multicountry datasets comprising 1,085,295 standard (table-top) and 161,840 portable (mobile) retinal images (Fig. 2b). Third, we evaluated the impact of DeepDR-Transformer in assisting PCPs and professional graders to identify referable DR (Fig. 2c). Finally, we conducted a two-arm, real-world prospective study to determine the impact of DeepDR-LLM system when integrated into clinical workflow in the primary care setting. Over a 4-week period, we monitored and compared the adherence to diabetes management recommendations between patients under the care of unassisted PCPs and those under the care of PCPs assisted by DeepDR-LLM (Fig. 2d). Collectively, our work offers a digital solution for primary diabetes care combining DR screening and referral, particularly useful in high-volume, low-resource settings in LMICs.

为了解决糖尿病护理中存在的差距,我们开发了一种创新的系统DeepDR-LLM,它将一个LLM模块和一个基于图像的DL模块结合在一起,提供全面的初级糖尿病护理和DR筛查方法。我们的系统专门针对PCPs(主要保健医生),特别是那些在负荷高、资源有限环境下工作的医生。DeepDR-LLM系统包括两个核心组件:一个LLM模块和一个基于图像的DL模块,称为DeepDR-Transformer。我们通过使用真实世界管理建议数据集来开发LLM模块,并进行了性能评估。然后,在英文和中文语言下进行了系统性能比较分析,并评估其与其他方法之间的差异。接着,我们使用多民族、多国家数据集进行了深度学习转换器(DeepDR-Transformer)用于可引用视网膜底层检测(DR detection) 的训练和测试,并使用大量标准台式机(retinal images) 和便携式移动设备(retinal images) 进行测试。第三,在协助PCPs和专业分级人员识别可引用视网膜底层时评估 Deep DR 转换器影响。最后,在初级保健设置中将 Deep DR LLM 系统整合到临床工作流程中进行了现实前景研究,以确定 Deep DR LLM 系统对未经协助 PCP 和经过协助 PCP 治疗患者遵循 diabetes management recommendations 的影响。总体而言,我们提出了一种数字化解决方案结合 DR 筛查和转介(primary diabetes care),特别适用于负荷高、资源有限情况下的应用场景

Fig. 1: Architecture of the DeepDR-LLM system.

figure 1

The DeepDR-LLM system consists of two modules: (1) module I (LLM module), which provides individualized management recommendations for patients with diabetes; (2) module II (DeepDR-Transformer module), which performs image quality assessment, DR lesion segmentation and DR/DME grading from standard or portable fundus images. There are two modes of integrating module I and module II in the DeepDR-LLM system. In the physician-involved integration mode, the outputs of module II (that is, fundus image gradability; the lesion segmentation of microaneurysm, cotton-wool spot, hard exudate and hemorrhage; DR grade; and DME grade) could assist physicians in generating DR/DME diagnosis results (that is, fundus image gradability, DR grade, DME grade and the presence of lesions). In the automated integration mode, the DR/DME diagnosis results include fundus image gradability, DR grade, DME grade classified by module II, and the presence of lesions segmented out by module II. These DR/DME diagnosis results and other clinical metadata will be fed into module I to generate individualized management recommendations for people with diabetes.

Fig. 2: Study design overview for the DeepDR-LLM system evaluation.

figure 2

a, Head-to-head comparative assessment of diabetes management recommendations generated by DeepDR-LLM, nontuned LLaMA, PCPs and endocrinology residents, using 100 cases randomly selected from CNDCS. b, Efficacy analysis of the DeepDR-Transformer module on multiethnic datasets of standard and portable fundus images. c, Utility evaluation of the DeepDR-Transformer module as an assistive tool for PCPs and professional graders in the detection of referable DR. d, Study design of a two-arm, real-world, prospective study to evaluate the impact of DeepDR-LLM on patients’ self-management behavior. In the outcome analysis, for substudy I, 253 participants in the unassisted PCP arm and 234 participants in the PCP+DeepDR-LLM arm were included; for substudy II, 154 participants in the unassisted PCP arm and 144 participants in the PCP+DeepDR-LLM arm were included.

Fig. 6: Envisioning the future of primary diabetes care with the clinical integration of the DeepDR-LLM system.

figure 6

First, patients with diabetes undergo comprehensive evaluations that include medical history taking that can be augmented by automated voice-to-text technology, physical examinations, laboratory assessments and fundus imaging. Following this, the DeepDR-LLM system processes the accumulated clinical data to concurrently deliver DR screening results and tailored management recommendations for PCPs. Subsequently, augmented with these AI-derived insights, PCPs then offer treatment guidance and health education to patients, either in person or through teleconsultation services.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/394363.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【实现100个unity特效之12】Unity中的冲击波 ——如何使用ShaderGraph制作一个冲击波着色器

最终效果 文章目录 最终效果新增LitShaderGraph圆环扭曲效果优化冲击波效果屏幕全屏冲击波圆形冲击波最终连线图代码控制补充源码完结 新增LitShaderGraph 圆环扭曲效果 让我们从一个UV节点开始 创建一个Vector2变量RingSpawnPosition表示冲击波生成位置,在X和Y上将其默认值…

PyTorch基于深度神经网络的语音情绪识别

【图书推荐】《PyTorch语音识别实战》-CSDN博客 《PyTorch语音识别实战&#xff08;人工智能技术丛书&#xff09;》(王晓华)【摘要 书评 试读】- 京东图书 (jd.com) 情绪数据的获取与标签的说明 首先是语音情绪数据集的下载&#xff0c;在这里使用瑞尔森情感语音和歌曲视听数…

sourcemap使用

sourcemap是什么以及怎么生成就不过多阐述了&#xff0c;这是之前看到的一篇文章感觉介绍的很详细&#xff1a;弄懂 SourceMap&#xff0c;前端开发提效 100% 浏览器加载sourcemap 我们线上代码一般不会开启sourcemap&#xff0c;在排查线上的问题时&#xff0c;可以通过浏览器…

DataX PostgreSQL 读写支持Geometry类型

这里写目录标题 简要说明依赖代码 简要说明 通过简单修改源码中关于相关的reader、writer和DBUtil工具类&#xff0c;实现表到表之间的Geometry字段类型数据的输送&#xff0c;目前修改仅测试过在postgresql的postgis插件下的Geometry类型可行。 依赖 1.通过gitclone 或者 到…

用户规模NO.1之后,钉钉还有多大的成长空间?

近日&#xff0c;第三方数据机构QuestMobile发布的《2024半年度中国移动互联网实力价值榜》显示&#xff0c;钉钉与微信、淘宝、抖音等一同入榜 “TOP50赛道用户规模NO.1 App”&#xff0c;蝉联效率办公赛道榜首。 可以看出&#xff0c;现阶段钉钉打开了较大的市场空间&#x…

Qt 跨平台APP单实例运行实现

一.调用方法 支持coreApplication和简单的application两种继承&#xff1a; 二.源码地址&#xff1a; SingleApp: Qt 单实例实现

android13 串口编号修改 串口名修改

总纲 android13 rom 开发总纲说明 目录 1.前言 2.技术分析 别名定义的语法规则 3.修改示例 使用别名 注意事项 4.不生效分析 5.编译查看 6.其他方法 7.彩蛋 1.前言 更改Android设备的串口编号涉及对系统深层次的配置进行修改,通常是为了解决硬件兼容性问题或满足特…

选择文件鼠标右键自定义菜单

注册表路径 计算机\HKEY_CLASSES_ROOT\*\shell 效果 操作 1.定位 winr&#xff0c;输入regedit, 地址栏输入以下路径&#xff0c;并回车。 计算机\HKEY_CLASSES_ROOT\*\shell 2.在shell上右键&#xff0c;新建项 3右键新建字符串值&#xff0c;Icon,Position 4 右键新建c…

LabVIEW压电陶瓷阻抗测试系统

开发了一种基于LabVIEW软件与PXI模块化仪器的压电陶瓷阻抗测试系统。该系统能在高电压工作条件下测量压电陶瓷的阻抗特性&#xff0c;包括阻抗模值与阻抗角的频率特性&#xff0c;为压电陶瓷的进一步分析与应用提供了重要参考。 项目背景 现有的阻抗测试仪大多只能在低电压条件…

【多模态】Flamingo: a Visual Language Model for Few-Shot Learning

链接&#xff1a;https://arxiv.org/pdf/2204.14198 论文&#xff1a;Flamingo: a Visual Language Model for Few-Shot Learning Introduction Motivation&#xff1a;仅使用少量标注样本来快速适应新任务的建模方式是多模态机器学习研究的一个挑战与难点定位&#xff1a;a …

案例分享-国外UI设计界面赏析

国外UI设计倾向于简洁的布局和清晰的排版&#xff0c;减少视觉干扰&#xff0c;提升用户体验。通过合理的色彩搭配和图标设计&#xff0c;营造舒适愉悦的使用氛围。 设计师不拘泥于传统框架&#xff0c;勇于尝试新元素和理念&#xff0c;使界面独特有趣。同时&#xff0c;强调以…

指纹失效,忘记iPhone屏幕解锁密码怎么应对?

为保证手机的安全及隐私&#xff0c;我们会给手机设置屏幕锁屏密码&#xff0c;通过输入设置密码来解锁手机屏幕锁&#xff0c;但为了给大家提供快速便捷的解锁方式&#xff0c;苹果公司提供了指纹解锁&#xff0c;不仅解锁更便捷了还极大地增强了设备的安全性。但有时我们手指…

Prompt万能框架与常用评估指标

引言 在人工智能的飞速发展中&#xff0c;大型语言模型&#xff08;LLM&#xff09;已成为研究和应用的热点。LLM以其强大的语言理解和生成能力&#xff0c;在诸如自然语言处理、文本生成、问答系统等多个领域展现出巨大潜力。然而&#xff0c;要充分发挥LLM的能力&#xff0c…

【Material-UI】按钮组:Split Button 详解

文章目录 一、Split Button 概述1. 组件介绍2. 基本用法 二、Split Button 的应用场景1. 提交操作2. 导出操作3. 文件操作 三、Split Button 的样式定制1. 变体&#xff08;Variants&#xff09;2. 颜色&#xff08;Colors&#xff09; 四、Split Button 的优势1. 提升用户体验…

信创安全 | 新一代内网安全方案—零信任沙盒

在当今数字化时代&#xff0c;访问安全和数据安全成为企业面临的重要挑战。传统的边界防御已经无法满足日益复杂的内网办公环境&#xff0c;层出不穷的攻击手段已经让市场单一的防御手段黔驴技穷。当企业面临越来越复杂的网络威胁和数据泄密风险时&#xff0c;更需要一种综合的…

数字新时代,如何守护网络空间安全?(非常详细)零基础入门到精通,收藏这一篇就够了

- 书籍推荐 - 网络空间已经成为继陆、海、空、天之后的第五疆域。随着大数据、云计算、人工智能的迅速发展&#xff0c;网络入侵、信息恶意窃取、数据篡改以及伪造攻击等行为严重影响国家安全&#xff0c;也损害公民、法人及其他组织的合法权益。毫无疑问&#xff0c;网络空间安…

华为OD-D卷多段线数据压缩

下图中&#xff0c;每个方块代表一个像素&#xff0c;每个像素用其行号和列号表示。 为简化处理&#xff0c;多段线的走向只能是水平、竖直、斜向45度。 上图中的多段线可以用下面的坐标串表示&#xff1a;(2, 8), (3, 7), (3, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 3), (8…

Java语言程序设计基础篇_编程练习题**16.11(创建表示字母出现次数的直方图)

目录 题目&#xff1a;**16.11&#xff08;创建表示字母出现次数的直方图&#xff09; 习题思路 1.HistogramPane类 2. HistogramPaneDemo类 代码示例 结果展示 题目&#xff1a;**16.11&#xff08;创建表示字母出现次数的直方图&#xff09; 编写一个程序&#xff0c;从文件…

CAD启动时自动加载vba程序方法

启动AutoCAD时自动启动你的dvb文件&#xff0c;方法如下&#xff1a; 方法一、加载 VBA 时&#xff0c;它会在 AutoCAD安装 目录中&#xff0c;查找名为 acad.dvb 的工程删除&#xff0c;将你的dvb文件命名为acad.dvb,替换掉原始文件即可。方法二、启动 AutoCAD 时&#xff0c…

Python 异步编程:Sqlalchemy 异步实现方式

SQLAlchemy 是 Python 中最流行的数据库工具之一&#xff0c;在新版本中引入了对异步操作的支持。这为使用异步框架&#xff08;如 FastAPI&#xff09;开发应用程序带来了极大的便利。在这篇文章中&#xff0c;简单介绍下 SQLAlchemy 是如何利用 Greenlet 实现异步操作的。 什…