ShardingSphere之ShardingProxy集群部署

文章目录

  • 介绍
  • 使用Zookeeper进行集群部署
  • 统一ShardingJDBC和ShardingProxy配置
    • 通过Zookeeper注册中心同步配置
    • 直接使用ShardingProxy提供的JDBC驱动读取配置文件

介绍

开发者手册

在conf/server.yaml配置文件中有下面这一段配置,就是关于集群部署的

mode:
#  type: standalonetype: Clusterrepository:type: ZooKeeperprops:namespace: governance_dsserver-lists: localhost:2181retryIntervalMilliseconds: 500timeToLiveSeconds: 60maxRetries: 3operationTimeoutMilliseconds: 500

ShardingSphere支持两种运行模式,Standalone独立模式和Cluster集群模式。

在Standalone独立模式下,ShardingSphere不需要考虑其他实例的影响,直接在内存中管理核心配置规则就可以了。如果把整个mode都注释掉,他就是ShardingSphere默认的运行模式。

而在Cluster集群模式下,ShardingSphere不光要考虑自己的配置规则,还需要考虑如何跟集群中的其他实例同步自己的配置规则。这就需要引入第三方组件来提供配置信息同步。ShardingSphere目前支持的配置中心包括:Zookeeper、etcd、Nacos、Consule

但是在ShardingSphere分库分表的场景下,这些配置信息几乎不会变动,访问频率也不会太高。所以,最为推荐的,是基于CP架构的Zookeeper。

另外,如果应用的本地和Zookeeper中都有配置信息,那么ShardingSphere会以Zookeeper中的配置为准。

使用Zookeeper进行集群部署

接下来我们可以基于Zookeeper部署一下ShardingProxy集群,看一下ShardingSphere需要同步的配置有哪些。

我们只需要在本地部署一个Zookeeper,然后将server.yaml中的mode部分解除注释:

mode:type: Clusterrepository:type: ZooKeeperprops:namespace: governance_dsserver-lists: localhost:2181retryIntervalMilliseconds: 500timeToLiveSeconds: 60maxRetries: 3operationTimeoutMilliseconds: 500

启动ShardingProxy服务后,可以看到Zookeeper注册中心的信息如下是:

namespace
├──rules # 全局规则配置
├──props # 属性配置
├──metadata # Metadata 配置
├ ├──${databaseName} # 逻辑数据库名称
├ ├ ├──schemas # Schema 列表
├ ├ ├ ├──${schemaName} # 逻辑 Schema 名称
├ ├ ├ ├ ├──tables # 表结构配置
├ ├ ├ ├ ├ ├──${tableName}
├ ├ ├ ├ ├ ├──...
├ ├ ├ ├──...
├ ├ ├──versions # 元数据版本列表
├ ├ ├ ├ ├──views # 视图结构配置
├ ├ ├ ├ ├ ├──${viewName}
├ ├ ├ ├ ├ ├──...
├ ├ ├ ├──${versionNumber} # 元数据版本号
├ ├ ├ ├ ├──dataSources # 数据源配置
├ ├ ├ ├ ├──rules # 规则配置
├ ├ ├ ├──...
├ ├ ├──active_version # 激活的元数据版本号
├ ├──...
├──nodes
├ ├──compute_nodes
├ ├ ├──online
├ ├ ├ ├──proxy
├ ├ ├ ├ ├──UUID # Proxy 实例唯一标识
├ ├ ├ ├ ├──....
├ ├ ├ ├──jdbc
├ ├ ├ ├ ├──UUID # JDBC 实例唯一标识
├ ├ ├ ├ ├──....
├ ├ ├──status
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├ ├──worker_id
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├ ├──process_trigger
├ ├ ├ ├──process_list_id:UUID
├ ├ ├ ├──....
├ ├ ├──labels
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├──storage_nodes
├ ├ ├──${databaseName.groupName.ds}
├ ├ ├──${databaseName.groupName.ds}

而在rules部分,就是我们配置的ShardingProxy的核心属性

- !AUTHORITYprovider:type: ALL_PERMITTEDusers:- root@%:root- sharding@%:sharding
- !TRANSACTIONdefaultType: XAproviderType: Atomikos
- !SQL_PARSERparseTreeCache:initialCapacity: 128maximumSize: 1024sqlCommentParseEnabled: truesqlStatementCache:initialCapacity: 2000maximumSize: 65535

而分库分表的信息,则配置在/governance_ds/metadata/sharding_db/versions/0/rules节点下

- !SHARDINGtables:# 逻辑表sys_user:actualDataNodes: ds_${0..1}.sys_user${1..2}# 分表策略tableStrategy:standard:shardingColumn: uidshardingAlgorithmName: sys_user_tab_alg# 分布式主键生成策略keyGenerateStrategy:column: uidkeyGeneratorName: alg_snowflake# 默认分库策略defaultDatabaseStrategy:standard:shardingColumn: uidshardingAlgorithmName: database_inline# 默认分表策略defaultTableStrategy:none:# 分片策略shardingAlgorithms:database_inline:type: INLINEprops:algorithm-expression: ds_${uid % 2}sys_user_tab_alg:type: INLINEprops:algorithm-expression: sys_user$->{((uid+1)%4).intdiv(2)+1}# 分布式主键生成策略keyGenerators:alg_snowflake:type: COSID_SNOWFLAKE

统一ShardingJDBC和ShardingProxy配置

既然ShardingProxy可以通过Zookeeper同步配置信息,那么我们可不可以在ShardingJDBC中也采用Zookeeper的配置呢?当然是可以的。

通过Zookeeper注册中心同步配置

第一种简单的思路就是将ShardingProxy中的mod部分配置移植到之前的ShardingJDBC示例中。

将application.properties中的配置信息全部删除,只配置Zookeeper地址:

在这里插入图片描述

# 微服务中配置信息如下,如果使用yml配置文件方式就不需要spring.shardingsphere这个前缀,当然使用yml加上这个前缀也能正常运行,只是需要了解这一点
# 如果使用properties就需要再上方配置的基础上加上spring.shardingsphere前缀
spring.shardingsphere.mode.type=Cluster
spring.shardingsphere.mode.repository.type=ZooKeeper
spring.shardingsphere.mode.repository.props.namespace=governance_ds
spring.shardingsphere.mode.repository.props.server-lists=localhost:2181
spring.shardingsphere.mode.repository.props.retryIntervalMilliseconds=600
spring.shardingsphere.mode.repository.props.timeToLiveSecoonds=60
spring.shardingsphere.mode.repository.props.maxRetries=3
spring.shardingsphere.mode.repository.props.operationTimeoutMilliseconds=500# 指定读取Zookeeper上的哪一个库。默认值是logic_db
# ShardingProxy的配置文件中默认配置的库是sharding_db
# 如果有多个数据库需要读取,用逗号隔开 spring.shardingsphere.database.name=sharding_hs_db,logic_db,sharding_db
spring.shardingsphere.database.name=sharding_hs_db

这里需要注意,如果是使用ShardingJDBC的方式,那么默认是会读取一个logic_db数据库,而ShardingProxy的配置中,默认的数据库名是sharding_db,就会造成微服务端在进行查询更新操作时没有想过的分片策略使用

在这里插入图片描述

org.apache.shardingsphere.mode.metadata.MetaDataContextsFactory#create()

public static MetaDataContexts create(...) throws SQLException {// instanceContext.getInstance().getMetaData() 这个方法判断是不是JDBCInstanceMetaData// 我们使用ShardingJDBC就是会创建JDBCInstanceMetaData类型Collection<String> databaseNames = instanceContext.getInstance().getMetaData() instanceof JDBCInstanceMetaData// 是JDBC类型就相当于读取本地的配置 ,当前我们配置文件中只有zookeeper连接的配置信息,所以最终读取到一个默认值logic_db   ? parameter.getDatabaseConfigs().keySet()     // 而ShardingProxy就相当于是去读取Zookeeper中metadata下的所有数据库   : persistService.getDatabaseMetaDataService().loadAllDatabaseNames();......
}

上方中instanceContext.getInstance().getMetaData()值的来源是ShardingSphereDataSource类中

// org.apache.shardingsphere.driver.jdbc.core.datasource.ShardingSphereDataSource类
// 构造方法会调用下面这个方法
private ContextManager createContextManager(...) throws SQLException {//  创建JDBCInstanceMetaDataInstanceMetaData instanceMetaData = InstanceMetaDataBuilderFactory.create("JDBC", -1);......
}// 进入到create()方法 下面使用SPI机制加载InstanceMetaDataBuilder接口的实现类
// 而InstanceMetaDataBuilder接口的实现类就只有 JDBCInstanceMetaDataBuilder 和  ProxyInstanceMetaDataBuilder
// 对应的就是SharingJDBC和ShardingProxy两种方式
public static InstanceMetaData create(String type, int port) {return ((InstanceMetaDataBuilder)TypedSPIRegistry.getRegisteredService(InstanceMetaDataBuilder.class, type)).build(port);
}

上方中parameter.getDatabaseConfigs().keySet()会读取到一个默认值logic_db 对应的源码在DatabaseNameSetter类中

package org.apache.shardingsphere.spring.boot.schema;public final class DatabaseNameSetter {private static final String DATABASE_NAME_KEY = "spring.shardingsphere.database.name";private static final String SCHEMA_NAME_KEY = "spring.shardingsphere.schema.name";/*** Get database name.** @param environment spring boot environment* @return schema name*/public static String getDatabaseName(final Environment environment) {StandardEnvironment standardEnv = (StandardEnvironment) environment;// 先读取spring.shardingsphere.database.name配置项的值String databaseName = standardEnv.getProperty(DATABASE_NAME_KEY);if (!Strings.isNullOrEmpty(databaseName)) {return databaseName;}// 再去读取 spring.shardingsphere.schema.name 配置项的值String schemaName = standardEnv.getProperty(SCHEMA_NAME_KEY);//  DefaultDatabase.LOGIC_NAME 默认值是 logic_dbreturn Strings.isNullOrEmpty(schemaName) ? DefaultDatabase.LOGIC_NAME : schemaName;}
}

直接使用ShardingProxy提供的JDBC驱动读取配置文件

ShardingSphere还提供了自己的JDBC驱动

在我们的微服务中 classpath下增加一个config.yaml,然后将我们之前在ShardingProxy中的几个关键配置整合到一起

databaseName: sharding_hs_dbdataSources:ds_0:url: jdbc:mysql://localhost:3306/sharding_sphere1?serverTimezone=UTC&useSSL=falseusername: rootpassword: 1234connectionTimeoutMilliseconds: 30000idleTimeoutMilliseconds: 60000maxLifetimeMilliseconds: 1800000maxPoolSize: 50minPoolSize: 1ds_1:url: jdbc:mysql://localhost:3306/sharding_sphere2?serverTimezone=UTC&useSSL=falseusername: rootpassword: 1234connectionTimeoutMilliseconds: 30000idleTimeoutMilliseconds: 60000maxLifetimeMilliseconds: 1800000maxPoolSize: 50minPoolSize: 1rules:
- !SHARDINGtables:# 逻辑表sys_user:actualDataNodes: ds_${0..1}.sys_user${1..2}# 分表策略tableStrategy:standard:shardingColumn: uidshardingAlgorithmName: sys_user_tab_alg# 分布式主键生成策略keyGenerateStrategy:column: uidkeyGeneratorName: alg_snowflake# 默认分库策略defaultDatabaseStrategy:standard:shardingColumn: uidshardingAlgorithmName: database_inline# 默认分表策略defaultTableStrategy:none:# 分片策略shardingAlgorithms:database_inline:type: INLINEprops:algorithm-expression: ds_${uid % 2}sys_user_tab_alg:type: INLINEprops:algorithm-expression: sys_user$->{((uid+1)%4).intdiv(2)+1}# 分布式主键生成策略keyGenerators:alg_snowflake:type: COSID_SNOWFLAKE# 注意,下方rules需要注释掉
rules:- !AUTHORITYusers:- root@%:root- sharding@:shardingprovider:type: ALL_PERMITTED- !TRANSACTIONdefaultType: XAproviderType: Atomikos- !SQL_PARSERsqlCommentParseEnabled: truesqlStatementCache:initialCapacity: 2000maximumSize: 65535parseTreeCache:initialCapacity: 128maximumSize: 1024props:max-connections-size-per-query: 1kernel-executor-size: 16  # Infinite by default.proxy-frontend-flush-threshold: 128  # The default value is 128.proxy-hint-enabled: falsesql-show: falsecheck-table-metadata-enabled: false# Proxy backend query fetch size. A larger value may increase the memory usage of ShardingSphere Proxy.# The default value is -1, which means set the minimum value for different JDBC drivers.proxy-backend-query-fetch-size: -1proxy-frontend-executor-size: 0 # Proxy frontend executor size. The default value is 0, which means let Netty decide.# Available options of proxy backend executor suitable: OLAP(default), OLTP. The OLTP option may reduce time cost of writing packets to client, but it may increase the latency of SQL execution# and block other clients if client connections are more than `proxy-frontend-executor-size`, especially executing slow SQL.proxy-backend-executor-suitable: OLAPproxy-frontend-max-connections: 0 # Less than or equal to 0 means no limitation.# Available sql federation type: NONE (default), ORIGINAL, ADVANCEDsql-federation-type: NONE# Available proxy backend driver type: JDBC (default), ExperimentalVertxproxy-backend-driver-type: JDBCproxy-mysql-default-version: 8.0.15 # In the absence of schema name, the default version will be used.proxy-default-port: 3307 # Proxy default port.proxy-netty-backlog: 1024 # Proxy netty backlog.

然后,可以直接用JDBC的方式访问带有分库分表的虚拟库。

public class ShardingJDBCDriverTest {@Testpublic void test() throws ClassNotFoundException, SQLException {String jdbcDriver = "org.apache.shardingsphere.driver.ShardingSphereDriver";String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";String sql = "select * from sharding_hs_db.sys_user";Class.forName(jdbcDriver);try(Connection connection = DriverManager.getConnection(jdbcUrl);) {Statement statement = connection.createStatement();ResultSet resultSet = statement.executeQuery(sql);while (resultSet.next()){System.out.println("uid= "+resultSet.getLong("uid"));}}}
}

启动时,发现报错了

Caused by: java.lang.IllegalStateException: dataSourceClassName can not be null.

在这里插入图片描述

看样子直接把配置从ShardingProxy中复制过来有点小问题,那边是不需要加的。

所以需要再现有数据源配置上加上dataSourceClassName的配置,我这里先是使用com.mysql.cj.jdbc.Driver

在这里插入图片描述

结果报错了

java.lang.ClassCastException: com.mysql.cj.jdbc.Driver cannot be cast to javax.sql.DataSource

在这里插入图片描述

再通过查看开发手册,修改成了com.zaxxer.hikari.HikariDataSource

在这里插入图片描述

此时又报了新的错误

java.lang.NullPointerException: Can not find transaction manager of `XA`

在这里插入图片描述

接下来再解决XA事务管理器相关的问题,因为ShardingProxy默认 XA事务管理器 使用的是 Atomikos ,我们上方config.yaml配置文件中也是这个配置。所以我接下里导入相关依赖

<!--XA 分布式事务 -->
<dependency><groupId>org.apache.shardingsphere</groupId><artifactId>shardingsphere-transaction-xa-core</artifactId><!-- 因为文本使用的是ShardingSphere 5.2.1这里和总版本对应上 --><version>5.2.1</version>
</dependency>

又报错了

Failed to instantiate [javax.sql.DataSource]: Factory method 'shardingSphereDataSource' threw exception; nested exception is java.lang.AbstractMethodError: com.atomikos.icatch.jta.JtaTransactionServicePlugin.beforeInit()V

在这里插入图片描述

从报错信息可以看出来是Atomikos源码包中有问题,接下来在进行解决

最终导入的依赖如下

<!--XA 分布式事务 -->
<dependency><groupId>org.apache.shardingsphere</groupId><artifactId>shardingsphere-transaction-xa-core</artifactId><version>5.2.1</version><exclusions><exclusion><artifactId>transactions-jdbc</artifactId><groupId>com.atomikos</groupId></exclusion><exclusion><artifactId>transactions-jta</artifactId><groupId>com.atomikos</groupId></exclusion></exclusions>
</dependency>
<!-- 版本滞后了 -->
<dependency><artifactId>transactions-jdbc</artifactId><groupId>com.atomikos</groupId><version>5.0.8</version>
</dependency>
<dependency><artifactId>transactions-jta</artifactId><groupId>com.atomikos</groupId><version>5.0.8</version>
</dependency>

终于执行通过

在这里插入图片描述

下方这种测试方法也可以

public class ShardingSphereDatasourceTest {public static void main(String[] args) throws SQLException, ClassNotFoundException {HikariDataSource dataSource = new HikariDataSource();dataSource.setDriverClassName("org.apache.shardingsphere.driver.ShardingSphereDriver");dataSource.setJdbcUrl("jdbc:shardingsphere:classpath:config.yaml");//        Class.forName("org.apache.shardingsphere.driver.ShardingSphereDriver");
//        String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";
//        Connection conn = DriverManager.getConnection(jdbcUrl);Connection conn = dataSource.getConnection();String sql = "SELECT cid,cname,user_id,cstatus from course where cid=851198093910081536";try {//ShardingConnectioinconn = dataSource.getConnection();//ShardingStatementStatement statement = conn.createStatement();//ShardingResultSetResultSet result = statement.executeQuery(sql);while (result.next()) {System.out.println("result:" + result);}} catch (SQLException e) {e.printStackTrace();} finally {if (null != conn) {conn.close();}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/395754.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

极狐GitLab CICD Catalog Beta 功能介绍

极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门面向中国程序员和企业提供企业级一体化 DevOps 平台&#xff0c;用来帮助用户实现需求管理、源代码托管、CI/CD、安全合规&#xff0c;而且所有的操作都是在一个平台上进行&#xff0c;省事省心省钱。可以一键安装极狐GitL…

视觉SLAM中的数学基础01 -3D空间的位置表示

在视觉SLAM中&#xff0c;理解和表示3D空间中的位置是至关重要的。这涉及到多种数学概念和工具&#xff0c;如坐标系、向量、矩阵、旋转和平移等。这些数学基础构成了视觉SLAM算法的核心。以下是3D空间位置表示的基本数学概念。 这是一个表示世界坐标系和相机坐标系之间关系的3…

JNPF快速开发平台赋能数字办公方式转变

随着信息技术的飞速发展&#xff0c;数字化转型已成为各行各业提升效率、优化流程的重要手段。JNPF快速开发平台正是在这样的背景下应运而生&#xff0c;它通过简化开发流程&#xff0c;使得非技术人员也能参与到应用的构建中来&#xff0c;从而加速了数字办公方式的转变。 数字…

畅捷通基于Flink的实时数仓落地实践

摘要&#xff1a;本文整理自畅捷通总架构师、阿里云MVP专家郑芸老师在 Flink Forward Asia 2023 中闭门会上的分享。内容主要为以下四部分&#xff1a; 业务背景数仓建设具体案例未来展望 一、业务背景 畅捷通是用友旗下成员企业&#xff0c;一直持续专注于小微企业的数字化转…

4K YouTube to MP3 Pro:跨平台音频提取与转换的好用工具

4K YouTube to MP3 Pro是一款专为追求高品质音频体验的用户设计的跨平台&#xff08;支持Mac与Windows&#xff09;音频提取与转换软件。该软件以其卓越的音频提取能力和简便的操作流程&#xff0c;在同类产品中脱颖而出&#xff0c;成为众多用户的心头好。 功能强大&#xff…

AI革新3D建模:Stable Fast 3D工具的高效应用——图片快速生成3D模型

在3D建模领域,AI技术的介入正引发一场革命。Stable Diffusion(SD)的最新应用——Stable Fast 3D,为快速生成3D模型提供了一个强大的解决方案。以下是对这项技术及其应用的详细介绍和优化建议。 一、工具概览 Stable Fast 3D模型:这是一个基于AI的3D模型生成工具,可通过H…

社交电商系统:技术融合与商业创新

一、引言 随着社交平台的普及和电商系统的不断发展&#xff0c;社交电商系统作为一种新型的商业模式应运而生。这种模式结合了传统电子商务和社交媒体的优势&#xff0c;为消费者和商家提供了一个全新的购物和销售环境。本文将深入探讨社交电商系统的技术架构、主要模式、优势以…

每日学术速递8.8

1.Rethinking temporal self-similarity for repetitive action counting 标题&#xff1a;重新思考重复动作计数的时间自相似性 作者&#xff1a; Yanan Luo, Jinhui Yi, Yazan Abu Farha, Moritz Wolter, Juergen Gall 文章链接&#xff1a;https://arxiv.org/abs/2407.09…

LVS(Linux Virtual Server)详解

LVS&#xff08;Linux Virtual Server&#xff09;是一个用于负载均衡的开源软件项目&#xff0c;旨在通过集群技术实现高性能、高可用的服务器系统。它运行在Linux操作系统上&#xff0c;并且可以利用内核级的资源来提高性能和稳定性。 思维导图 LVS的工作原理 LVS主要基于Ne…

【树的遍历】

题目 代码 #include<bits/stdc.h> using namespace std;const int N 40;int in[N], pos[N]; //中序、后序 int idx[N]; //中序的值->索引 unordered_map<int, int> l, r; //根节点的左、右树根节点 int n; int build(int il, int ir, int pl, int pr) {int ro…

vite + tsc 打包报TS类型错误问题及解决方法

当新建vue3项目&#xff0c;package.json文件会自动添加一些配置选项&#xff0c; 这些选项基本没有问题&#xff0c;但是在实际操作过程中&#xff0c;列举一个目前我遇到的一个问题&#xff1a;打包后报了一堆TS类型错误&#xff0c;怎么消除这些错误&#xff1f; 报错信息&a…

ubuntu20从docker安装到制作自己的镜像使用记录

ubuntu20从docker安装到制作自己的镜像使用记录 第一章&#xff1a;配置环境 1.ubuntu20 2.docker镜像18.04 3.参考&#xff1a;https://www.runoob.com/docker/docker-tutorial.html 第二章&#xff1a;安装docker 一、安装docker 参考1&#xff1a;Ubuntu安装docker并运…

Go语言编程大全,web微服务数据库十大专题精讲

本课程主要从数据结构、Go Module 依赖管理、IO编程、数据库编程、消息队列、加密技术与网络安全、爬虫与反爬虫、web开发、微服务通用技术、Kitex框架等方面讲解~ 链接&#xff1a;https://pan.quark.cn/s/d65337a0e60d

视频循环存储的实现

目录 1. 三方工具 2. 视频存储的实现 2.1 分段存储 - 比如每15分钟 2.2 对齐到15分钟整边界 2.3 循环存储的实现 video_space_daemon.sh 3.封装 3.1 主执行程序&#xff0c;修订版 3.2 创建服务 3.3 service关联的执行脚本文件 4.额外的工作 附录A: ffmpeg视频存储…

矩阵算法的介绍和实现

一. 介绍 首先我们要清楚矩阵是什么&#xff1a;矩阵是一个按照长方阵列排列的复数或实数集合 1> 定义 定义&#xff1a;mn矩阵为mn个数排成的m行n列的表格&#xff0c;当mn时&#xff0c;矩阵A称为n阶方阵或者n阶矩阵。零矩阵&#xff1a;矩阵所有元素都为0。同型矩阵&a…

一个简单的录音软件(利用QT录音,ffmpeg进行音频重采样,fdk-aac编码)

录音软件是一种非常有用的工具&#xff0c;可以帮助我们记录和存储语音信息。在本文中&#xff0c;我们将介绍一个简单的录音软件&#xff0c;该软件利用QT进行录音&#xff0c;使用ffmpeg进行音频重采样&#xff0c;并使用fdk-aac编码。 一、 环境介绍 1、QT版本: QT5.…

SuccBI+低代码文档中心 — 可视化分析(仪表板)(上)

有关仪表板的设计器&#xff1a; 查询设置 由于仪表板的设计器是所见即所得的&#xff0c;可以将当前制作的内容和数据的查询结果实时展示在界面中&#xff0c;当引入到仪表板的模型数据量较大时&#xff0c;为了提高设计器界面的查询性能&#xff0c;提供了以下两种方法&…

Azure openai connection with javascript

题意&#xff1a;使用JavaScript与Azure OpenAI进行连接 问题背景&#xff1a; I have created my chatbot with javascript and used open ai. I need to change it to azure open ai but can not find the connection details for javascript. This is how i connect with p…

基于C#调用文心一言大模型制作桌面软件(可改装接口)

目录 开发前的准备账号注册应用创建应用接入开始开发创建项目设计界面使用 AK,SK 生成鉴权签名窗体代码百度智能云千帆大模型平台什么是百度智能云千帆大模型平台模型更新记录开发前的准备 账号注册 访问百度智能云平台,通过百度账号登录或手机号验证。 点此跳转百度智能云平…

数值分析【4】

目录 ​编辑第六章 数值积分微分 龙贝格 高斯求积 查表&#xff1f; 插值求导 两点 ​编辑 三点​编辑 第七章 ode 龙哥库塔 线性多步法 第八章 eig 幂法&#xff1a;v-》Av-》AAv-》……​编辑 反幂法 每次成得是A逆&#xff0c;这样得到摸最小的特征值​编辑 Q…