YOLO系列:从yolov1至yolov8的进阶之路 持续更新中

一、基本概念

1.YOLO简介

YOLO(You Only Look Once):是一种基于深度神经网络的对象识别和定位算法,其最大的特点是运行速度很快,可以用于实时系统。

2.目标检测算法

  • RCNN:该系列算法实现主要为两个步骤:先从图片中搜索出一些可能存在对象的候选区(Selective Search),大概2000个左右;然后对每个候选区进行对象识别。检测精度较高,但速度慢。

  • YOLO:将筛选候选区域与目标检测合二为一,大大加快目标检测速度,但准确度相对较低。

3.评价目标

3.1.IOU

IOU(Intersection over Union):交并比,候选框(candidate bound,紫色框)与原标记框(ground truth bound,红色框)的交叠率,IOU值越高,说明算法对目标的预测精度越高。

  • Area of overlap:原标记框与候选框的交集面积
  • Area of union:原标记框与候选框的并集面积

3.2.置信度

3.3.二分类指标

在「二分类」任务中,对样本的描述:

  • Position:正例,二分类中的一类样本,一般是想要的
  • Negative:负例,二分类中另一类样本,一般是不想要的
  • TP(True Position):在拿出样本中,正确识别为正例
  • FP(False Position) :在拿出样本中,错误识别为正例,即本身是负例(误判)
  • TN(True Negative) :未拿出样本中,正确当负例舍弃
  • FP(False Negative) :未拿出样本中,错误当负例舍弃,即本身是正例(遗漏)

二分类结果的评判指标:

3.4.AP

由于 Precision 与 Recall 只适用于「二分类问题」。当存在多样本分类时,对每一类样本单独考虑其「二分类问题」,即目标样本与其他样本的分类问题。

当确认的样本越少,出错的风险也就越小;当选择出的样本量越大,得到全部目标样本的可能性越大。因此 Precision 与 Recall 是一度矛盾的关系

  • Precision 较大时,Recall 较小:当要分辨 10 个苹果时,我只拿出一个苹果,那么 Precision 就是 100 %,而 Recall 确是 10 %
  • Precision 较大时,Recall 较小:若选择出 100 个水果,10 个苹果我们都拿出来了,但是还有 90 个其他水果。Precision 就是 10 %,而 Recall 是 100 %

假设模型的任务为从图片中,检测出三类物体:(1,2,3)。「一张图片」的模型预测结果如下所示

现在对每一类别分别绘制 Precision-Recall曲线

每个预测的 box 与其分类对应的所有 Ground True box 进行 IOU 计算,并选择出最大的 IOU 作为输出结果。 认为当前预测 box 就是 IOU 最大的这个 Ground True box 的预测结果。(若多个预测box 与同一个 Ground True box 相对应,则只记录一个)

将 max_iou 与给定阈值 thresh = 0.5 进行比较,大于阈值就标记 1

数据根据「分类置信度 class_conf」 进行排序

取出分类 1

假设在当前图片中,存在 3 个 1 类目标,计算其 Precision 与 Recall。

根据上面的结果,假设只找出 1 个 1 类目标时:

假设只找出 2 个 1 类目标时

假设只找出 3 个 1 类目标时

以此类推,找出全部时

根据上述 Precision 与 Recall 序列绘制出的曲线,就是 1 类别目标对应的Precision-Recall曲线,重复上述步骤,就是绘制出 2, 3 类别的曲线。 根据Precision-Recall曲线就能计算 AP 值了。

AP(Average Precision):Precision-Recall曲线下方的面积。结合 Precision 与 Recall ,更加全面的对模型的好坏进行评价。

绘制完整的 Precision-Recall曲线:将 Precision 与 Recall 绘制成曲线。

查找 precision 突然变大的点

利用这个突变点来代表这个区间内的 Precision

最后计算彩色矩形区域的面积,该值就是 AP

二、YOLO V1

1.网络模型

对于第一版 YOLO 的网络模型就两个部分: 卷积层、全连接层 。

  • 输入: 尺寸为 448x448x3 的图片, 图片尺寸定死

  • 输出: 图片中被检测目标的位置(矩形框坐标)与被检测物体的分类。

2.目标检测原理

  1. 将输入图片通过 7x7 网格,划分为 49 个单元格
  2. 每个单元格负责一个检测目标:存储检测目标外接矩形的「中心点坐标」、长宽;存储检测目标的类型。 即当检测目标的外接矩形「中心点坐标」位于该单元格内时,就让该单元格全权负责储存这个检测目标的信息。
  3. 每个单元格持有2个候选矩形框,会通过置信度选择一个最好的当作预测结果输出

3.模型输出

V1 版本的输出结果为 7x7x30 的一个向量,对该向量进行维度转换得到

其中 7x7 表示利用 7x7 的网格,将输入图片划分为 49 个单元格;30 表示对每个单元格预测结果的描述:两个目标位置候补框、置信度、目标的分类

  • bounding box 1 :第一个候补框的参数,外接矩形中心坐标 (x1,y1)(x1​,y1​) ;长宽 (w1,h1)(w1​,h1​)
  • confidence 1 :第一个候补框是待检测目标的置信度
  • bounding box 2 :第二个候补框的参数,外接矩形中心坐标 (x1,y1)(x1​,y1​) ;长宽 (w1,h1)(w1​,h1​)
  • confidence 2 :第二个候补框是待检测目标的置信度
  • 分类:检测目标为 20 个分类的概率

其中,对于中心坐标 (x,y)(x,y) 、长宽 (w,h)(w,h) 值的存储是一个百分比。

  • 中心坐标 (x,y)(x,y) :相对单元格长宽的比值
  • 长宽 (w,h)(w,h):相对于输入图片长宽的比值

4.损失函数

4.1.定义

4.2.位置预测

当预测外接框与目标外接框的宽度、高度的差值一样时,对于较大的物体而言相对误差小,而对于较小物体而言相对误差较大。因此为了让损失函数对小物体的外接矩形的宽度、高度更敏感一些,在 YOLO V1 中采用了 「根号」: 自变量在[0,1]取值时,根号的斜率变化比直线要大。

5.模型预测

5.1.思路

训练好的 YOLO 网络,输入一张图片,将输出一个 7x7x30 的张量(tensor)来表示图片中所有网格包含的对象(概率)以及该对象可能的2个位置(bounding box)和可信程度(置信度)。每个单元格有两个 bounding box ,一共有 7x7 个单元格,现在将所有的 7x7x2=98 个 bounding box 绘制出来

可以看见图上到处都是 bounding box,现在就需要从这些 bounding box 中,筛选出能正确表示目标的 bounding box。

为了实现该目的, YOLO 采用 NMS(Non-maximal suppression,非极大值抑制)算法

三、YOLO V2

1.模型改进

1.1.卷积化

在 V1 中,最后的输出结果是靠「全连接层」得到的,这也就限制了输入图片的尺寸。因此在 V2 将所有的全连接层转为了卷积层,构造了新的网络结果 DarkNet19,其中还利用 1x1 卷积对模型进行优化。​​​​​​

1.2.Batch Nomalization

在 DarkNet19 网络中,对于卷积层加入了 Batch Normalization ,并删除了 dropout 。

由于 DarkNet19 做了 5 次池化且卷积均进行了padding,所以输入图片将会被缩放 25=3225=32 倍,即 448x448 的输入,输出结果应当是 448/32=14,但是14x14的结果没有特定的中心点,为了制造一个中心点,模型的输入图片尺寸就更改为了416x416,输出结果就变为了13x13

1.3.Fine-Grained Features

在 DarkNet19 模型中,存在一个 PassThrough Layer 的操作,该操作就是将之前阶段的卷积层结果与模型输出结果进行相加。根据 感受野 可知,越靠前的网络层对细节的把握越好,越靠后的网络更注重于目标整体,为了使得输出结果对小物体有更好的把握,就可以利用 PassThrough Layer 来提升结果特征图对小物体的敏感度。

1.4.图片输入

由于历史原因,ImageNet分类模型基本采用大小为 224x224 的图片作为输入,所以 YOLO V1 模型训练使用的输入图片大小其实为 224x224,在模型预测时,又使用的是 448x448 的图片作为输入,这样就导致模型的训练和模型的预测,输入其实是有差异的。为了弥补这个差异,模型训练的最后几个 epoch 采用 448x448 的图片进行训练。

2.Anchor Box

YOLO V1 的 bounding box 缺陷

  1. 一个单元格只能负责一个目标检测的结果,如果该单元格是多个目标的中心点区域时,V1 版本将不能识别。
  2. V1 中,对于 bounding box 的预测结果并未加限制,这就会导致 bounding box 的中心点可能会跑到其他单元格内
  3. bounging box 的宽度与高度是靠模型自己学习的,这就可能走很多弯路。

2.1.Anchor

  1. 模型训练开始前,人为为每个单元格预定义几个不同大小的 Anchor Box,这样从训练开始,每个单元格的bounding box就有了各自预先的检测目标,例如瘦长的 bounging box 就适合找人,矮胖的 bounging box 就适合找车等。

  2. 模型训练就是调整这些预定义的bounding box 的中心点位置与长宽比列。

2.2.Box 数据结构

在引入 Anchor box 后, YOLO V2 对于一个 bounging box 的数据结构为:

  • 中心点坐标 (x,y)(x,y),相对于单元格宽度的比列值
  • 相对于 Anchor box 宽高的偏移量 (w,h)(w,h)
  • 当前 bounging box 存在检测目标的置信度 ConfidenceConfidence
  • 检测目标对应各个类型的概率 pipi​

一个单元格能检测多少目标,就输出多少个上述 Box 数据结构。

2.3.Box 解析

2.4.确定Anchor

3.损失函数

四、YOLO SPP

五、YOLO V4

六、YOLO V5

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/395879.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

江科大/江协科技 STM32学习笔记P22

文章目录 AD单通道&AD多通道ADC基本结构和ADC有关的库函数AD单通道AD.cmain.c连续转换,非扫描模式的AD.c AD多通道AD.cmain.c AD单通道&AD多通道 ADC基本结构 第一步,开启RCC时钟,包括ADC和GPIO的时钟,ADCCLK的分频器也需…

华为hcip-big data 学习笔记《一》大数据应用开发总指导

一、大数据应用开发总指导 1. 前言 随着大数据技术的飞速发展和大数据应用的不断普及,大数据已经成为当今时代最热门的话题之一。不过对于大数据的了解,很多人还只是停留在表面,提到大数据,很多人只是直到它是最新的科技&#x…

集成新的 AI 服务时需要考虑的问题

让我们来谈论最近发生的几个恐怖故事。 去年年底,一家雪佛兰经销商在其主页上部署了一个由大型语言模型 (LLM) 驱动的聊天机器人。该 LLM 经过雪佛兰汽车详细规格的训练,旨在仅回答有关雪佛兰汽车的问题。 然而,用户很快就找到了绕过这些限…

在 Linux 9 上安装 Oracle 19c:克服兼容性问题 (INS-08101)

Oracle 数据库 19c 的基础版本 (19.3) 发布的时候还没有 Linux 9 ,因此在Linux 9上面安装Oracle 19c会遇到很多兼容性问题。本文将探讨如何解决这些问题。 安装步骤 设置环境变量以绕过操作系统检查: Oracle 19.3 安装程序无法识别 Linux 9。 [WARNIN…

【机器学习】 Sigmoid函数:机器学习中的关键激活函数

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 Sigmoid函数:机器学习中的关键激活函数1. 引言2. Sigmoid函数定义3.…

C语言之“ 分支和循环 ” (2)

🌹个人主页🌹:喜欢草莓熊的bear 🌹专栏🌹:C语言基础 目录 前言 一、switch语句 1.1 if语句和switch语句的对比 1.2 switch语句中的break 1.3 switch语句中的default 1.4 switch语句中的case和default…

Java | Leetcode Java题解之第326题3的幂

题目: 题解: class Solution {public boolean isPowerOfThree(int n) {return n > 0 && 1162261467 % n 0;} }

HTML表单元素

HTML表单元素 表单把用户的信息发给服务器。 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title> </head><body><form class"stylin_form1" action"process_form.php" met…

WPF篇(3)- WrapPanel控件(瀑布流布局)+DockPanel控件(停靠布局)

WrapPanel控件&#xff08;瀑布流布局&#xff09; WrapPanel控件表示将其子控件从左到右的顺序排列&#xff0c;如果第一行显示不了&#xff0c;则自动换至第二行&#xff0c;继续显示剩余的子控件。我们来看看它的结构定义&#xff1a; public class WrapPanel : Panel {pub…

新书速览|Python数据可视化:科技图表绘制(送书)

《Python数据可视化:科技图表绘制》 本书内容 《Python数据可视化:科技图表绘制》结合编者多年的数据分析与科研绘图经验&#xff0c;详细讲解Python语言及包括Matplotlib在内的多种可视化包在数据分析与科研图表制作中的使用方法与技巧。《Python数据可视化:科技图表绘制》分为…

基于大数据的气象数据分析与可视化系统设计与实现【爬虫海量数据,LSTM预测】

文章目录 有需要本项目的代码或文档以及全部资源&#xff0c;或者部署调试可以私信博主项目介绍研究目的研究意义研究思路可视化展示每文一语 有需要本项目的代码或文档以及全部资源&#xff0c;或者部署调试可以私信博主 项目介绍 本课题主要针对气象数据进行分析以及可视化…

【Datawhale AI夏令营第四期】 魔搭-大模型应用开发方向笔记 Task01 DeepSeek简易AI助手

【Datawhale AI夏令营第四期】 魔搭-大模型应用开发方向 Task01 正处于拿毕业证求职和实习离职期间的过渡期&#xff0c;想着闲着也是闲着&#xff0c;索性拉上本科同学队友报名参加AI比赛&#xff0c;想方设法卷个项目经验出来。 Task1的任务主要是体验从0开始搭建一个AI对…

SpringBoot统一功能处理——统一数据返回格式

目录 一、简单使用 二、存在的问题描述 三、优点 一、简单使用 统一的数据返回格式使用 ControllerAdvice 和 ResponseBodyAdvice 的方式实现 ControllerAdvice 表示控制器通知类。 添加类 ResponseAdvice , 实现 ResponseBodyAdvice 接口&#xff0c;并在类上添加 …

使用 Matplotlib 绘制折线图

使用 Matplotlib 绘制折线图 数据可视化是数据分析的重要组成部分&#xff0c;通过图表&#xff0c;我们可以更直观地理解数据背后的趋势和模式。Matplotlib 是 Python 最基础也是最常用的绘图库之一&#xff0c;非常适合初学者。本文将带你从零开始&#xff0c;逐步创建和自定…

VisionPro二次开发学习笔记2-使用C#从图像数据库文件获取图像

使用C#从图像数据库文件获取图像 图像文件对象使您可以从图像文件获取图像&#xff0c;以及将获取的图像保存到图像文件中以备后用。VisionPro为图像文件对象提供了几种类&#xff0c;具体取决于您要使用的图像格式&#xff1a; 对CDB / IDB文件使用CogImageFileCDB对象将Cog…

谈对象系列:C++类和对象

文章目录 一、类的定义1.1类定义的格式类的两种定义方法结构体&#xff1a; 1.2访问限定符1.3类域 二、实例化2.1变量的声明和定义2.2类的大小计算空类的大小&#xff08;面试&#xff09;&#xff1a; 三、this指针小考题 一、类的定义 1.1类定义的格式 使用class关键字&…

使用开源 LLM 充当 LangChain 智能体

太长不看版 开源 LLM 现已达到一定的性能水平&#xff0c;可堪作为智能体工作流的推理引擎。在我们的测试基准上&#xff0c;Mixtral 甚至已超越 GPT-3.5&#xff0c;而且我们还可以通过微调轻松地进一步提高其性能。 引言 经由因果语言建模任务训练出的大语言模型&#xff…

【电控笔记z56】ADRC回路设计(与smo比较)

用在IPM ADRC 估测反电动势 参数变动 : 内部扰动 SMO : 有高频成分 需要低通滤波器滤去 - 需要补偿延迟 两轴同步旋转坐标下做adrc adrc适合去做变化速度比较低的扰动 ADRC : 估测高速变化的扰动 , 需要修改估测器 电机模型 Ld不等于Lq 式7如下蓝色框图 eso等效成一个纯积分…

Stable Diffusion绘画 | 提示词格式

推荐格式 提升画质的提示词与画风的提示词&#xff0c;对整体画面影响较大&#xff0c;建议在首行填写 画质词画风词画面主体描述环境、场景、灯光、构图Lora负面词 画质词 常规画质词&#xff1a; (masterpiece:1.2),best quality,highres,extremely detailed CG,perfect…

Jenkins部署java项目

文章目录 引言I Jenkins 配置系统配置Maven 配置添加gitea凭据II 新建部署任务(maven)构建触发器构建环境Post StepsIII Jar包部署为linux系统服务创建systemd服务创建jar启动脚本IV java激活指定环境的Profile文件命令行指定配置指定环境下的nacos配置Dockerfile指定具体环境…