OpenCV三维解算常用方法C++

    如果标定过程是通过OpenCV张正友标定法实现的,得到的内参外参保存在.txt文件中是这样的形式:

① 内参intrinsics.txt:

 ② 外参extrinsics.txt:

    那么可以通过如下方法读取.txt文件获取左右相机内外参,主要包括三维解算需要用到的左右相机内参矩阵、畸变系数,以及左右相机构成双目系统的旋转矩阵和平移矩阵,具体代码如下:

std::string intrinsicsPath{ "D:\\Program Files\\edge下载文件\\030716.16\\030716.16\\intrinsics.txt" }; // 左右相机内参数文件路径
std::string extrinsicsPath{ "D:\\Program Files\\edge下载文件\\030716.16\\030716.16\\extrinsics.txt" }; // 左右相机外参数文件路径// 加载左右相机内参数
cv::Mat cameraMatrixL;  // 左相机内参矩阵
cv::Mat distCoeffsL;    // 左相机畸变参数
cv::Mat cameraMatrixR;  // 右相机内参矩阵
cv::Mat distCoeffsR;    // 右相机畸变参数cv::FileStorage fs(intrinsicsPath, cv::FileStorage::READ);
fs["cameraMatrixL"] >> cameraMatrixL;
fs["cameraDistcoeffL"] >> distCoeffsL;
fs["cameraMatrixR"] >> cameraMatrixR;
fs["cameraDistcoeffR"] >> distCoeffsR;
fs.release();//std::cout << "左相机内参矩阵......" << std::endl;
//std::cout << cameraMatrixL << std::endl;
//std::cout << "左相机畸变参数......" << std::endl;
//std::cout << distCoeffsL << std::endl;
//std::cout << std::endl;
//std::cout << "右相机内参矩阵......" << std::endl;
//std::cout << cameraMatrixR << std::endl;
//std::cout << "右相机畸变参数......" << std::endl;
//std::cout << distCoeffsR << std::endl;
//std::cout << std::endl;// 加载相机外参数
cv::Mat R; // 旋转矩阵
cv::Mat T; // 平移向量fs.open(extrinsicsPath, cv::FileStorage::READ);
fs["R"] >> R;
fs["T"] >> T;
fs.release();

    在得到二维像素坐标之后可以通过畸变校正,三角测量法(Triangulation) 来计算三维点坐标。通常是基于 OpenCV 提供的 cv::triangulatePoints 进行计算,这是一个标准的立体视觉技术,用于通过两个相机视角中的匹配点估算其三维坐标。

    步骤如下代码所示:

    二维坐标→畸变校正→转换到相机坐标系→三维解算。

        std::vector<cv::Point2f> leftPointsUndistort, rightPointsUndistort;cv::undistortPoints(targetsL, leftPointsUndistort, cameraMatrixL, distCoeffsL, cv::Mat(), cameraMatrixL);// targetsL是未做畸变矫正前处理得到的二维中心点坐标(左相机)cv::undistortPoints(targetsR, rightPointsUndistort, cameraMatrixR, distCoeffsR, cv::Mat(), cameraMatrixR);// targetsR是未做畸变矫正前处理得到的二维中心点坐标(右相机)// 转换到相机坐标系std::vector<cv::Point2f> leftPointsCam = pixel2cam(leftPointsUndistort, cameraMatrixL);std::vector<cv::Point2f> rightPointsCam = pixel2cam(rightPointsUndistort, cameraMatrixR);// 求解三维坐标std::vector<cv::Point3f> points3d = triangulation(leftPointsCam, rightPointsCam, R, T);

调用的函数代码:

std::vector<cv::Point3f> triangulation(const std::vector<cv::Point2f>& pts1, const std::vector<cv::Point2f>& pts2, cv::Mat& R, cv::Mat& T)
{cv::Mat T1 = (cv::Mat_<float>(3, 4) << 1, 0, 0, 0,0, 1, 0, 0,0, 0, 1, 0);R.convertTo(R, CV_64FC1);T.convertTo(T, CV_64FC1);cv::Mat T2 = (cv::Mat_<float>(3, 4) <<R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2), T.at<double>(0, 0),R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2), T.at<double>(1, 0),R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2), T.at<double>(2, 0));cv::Mat pts4d;cv::triangulatePoints(T1, T2, pts1, pts2, pts4d);std::vector<cv::Point3f> pts3d;for (int i = 0; i < pts4d.cols; ++i){float x = pts4d.at< float >(0, i) / pts4d.at< float >(3, i);float y = pts4d.at< float >(1, i) / pts4d.at< float >(3, i);float z = pts4d.at< float >(2, i) / pts4d.at< float >(3, i);pts3d.emplace_back(cv::Point3f(x, y, z));}return pts3d;
}std::vector<cv::Point2f> pixel2cam(const std::vector<cv::Point2f>& pts, const cv::Mat& cameraMatrix)
{std::vector<cv::Point2f> ptsCam;for (const auto& p : pts){cv::Point2f c((p.x - cameraMatrix.at<double>(0, 2)) / cameraMatrix.at<double>(0, 0),(p.y - cameraMatrix.at<double>(1, 2)) / cameraMatrix.at<double>(1, 1));ptsCam.emplace_back(c);}return ptsCam;
}

 注:pixel2cam 函数的作用是将像素坐标转换为归一化相机坐标(normalized camera coordinates)。这是必要的,因为 三角测量法 计算三维点的位置时,假设输入的点是在无畸变的相机坐标系下。

这里的 (xc,yc) 是归一化相机坐标,表示 光学中心 归一化后的坐标,它们不再依赖于摄像机的焦距和像素比例,因此可以用于三角测量。 

三角测量的数学原理

  • 三角测量基于 两个不同视角的相机投影矩阵(Projection Matrix)。

  • 如果使用 像素坐标,那么投影矩阵应该是 P=K[R∣T](包含相机内参)。

  • 但如果使用 归一化相机坐标,那么投影矩阵可以简化为 P=[R∣T](去除了相机内参)。

  • 这样可以直接利用 相机外参(R, T) 进行计算,提高准确性。

三角测量计算的流程

  1. 将像素坐标转换为归一化相机坐标pixel2cam

  2. 构造相机投影矩阵

    • 第一个相机位于世界坐标系的原点(通常以左相机为原点):

      P1=[I∣0]
    • 第二个相机的投影矩阵由外参 旋转矩阵 R平移向量 T 给出:

      P2=[R∣T]
  3. 使用 OpenCV 的 triangulatePoints 进行三角测量

    • 通过求解一组线性方程,得到齐次坐标 (X,Y,Z,W)

    • 通过 X′=X/W,Y′=Y/W,Z′=Z/W 得到真实的三维坐标

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/39891.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

光电效应及普朗克常数的测定数据处理 Python实现

内容仅供参考&#xff0c;如有错误&#xff0c;欢迎指正&#xff0c;如有疑问&#xff0c;欢迎交流。 因为我不会Excel所以只能用Python来处理 祝大家早日摆脱物理实验的苦海 用到的一些方法 PCHIP &#xff08;分段三次埃尔米特插值多项式&#xff09; 因为实验时记录的数…

【日常笔记 1】 有关异常学习笔记

今天笔记内容详见 ----- C11_5 异常部分 笔记较乱 , 笔者只是为了记录重要知识点 , 想重点了解相关知识点的可关注笔者正文栏目 ~ 笔者代码仓 : C11_5 代码 异常部分学习笔记 异常基本关键字信息   throw    ----    抛出异常   try - catch ----    捕获异常 , 必须…

Linux UDP网络编程套接字sockets

目录 一、预备知识 1、IP地址 2、端口号 3、Socket网络通信 4、认识TCP/UDP协议 &#xff08;1&#xff09;TCP协议 &#xff08;2&#xff09;UDP协议 &#xff08;3&#xff09;网络字节序 二、socket网络套接字 1、概念 2、Socket 的地址结构和一系列转换函数 &a…

VUE3项目VITE打包优化

VUE3项目VITE打包优化 代码加密依赖配置效果对比图 自动导入依赖配置 代码压缩依赖配置效果对比图 图片压缩依赖配置效果对比图 字体压缩总结与实践运用效果 代码加密 依赖 npm install -D vite-plugin-bundle-obfuscator配置 import vitePluginBundleObfuscator from "…

NO.57十六届蓝桥杯备战|基础算法-高精度|加减乘除|模拟竖式计算(C++)

当数据的值特别⼤&#xff0c;各种类型都存不下的时候&#xff0c;此时就要⽤⾼精度算法来计算加减乘除&#xff1a; 先⽤字符串读⼊这个数&#xff0c;然后⽤数组逆序存储该数的每⼀位&#xff1b;利⽤数组&#xff0c;模拟加减乘除运算的过程。 ⾼精度算法本质上还是模拟算法…

最新DeepSeek-V3-0324:AI模型性能提升与新特性解析

文章目录 性能提升概览新特性解析1. 推理任务表现提高2. 前端开发能力增强3. 中文写作与搜索能力优化4. 模型开源 总结与展望 随着人工智能技术的快速发展&#xff0c;模型的迭代更新成为推动技术进步的重要力量。最近&#xff0c;DeepSeek团队发布了其V3模型的最新小版本更新—…

linux常用指令(7)

今天还是继续学习linux相关的指令,基础越牢固,就越有利于我们后面的学习,那么话不多说,来看. 1.head指令 功能描述&#xff1a;用于显示文件的开头部分内容,默认情况下head显示文件的前10行内容. 基本语法&#xff1a;head 文件 选项&#xff1a;-n nums 显示前nums行内容 …

数仓架构告别「补丁」时代!全新批流一体 Domino 架构终结“批流缝合”

在数字化转型的浪潮中&#xff0c;企业对数据处理的需求日益复杂多变&#xff0c;传统的批处理和流处理架构已难以满足日益增长的性能和时效性要求。在此背景下&#xff0c;YMatrix CEO 姚延栋发布了深度文章《数仓架构告别「补丁」时代&#xff01;全新批流一体 Domino 架构终…

HTB 笔记 | SQL 注入基础 + 实操小练习 P2

1. 数据库类型 数据库分为两类&#xff1a; 关系型数据库&#xff08;Relational Databases&#xff09; 使用表格存储数据&#xff08;行和列&#xff09;。数据通过“键”连接&#xff0c;形成逻辑关系。示例&#xff1a;MySQL、PostgreSQL、SQL Server。特点&#xff1a;结…

MySQL 入门大全:数据类型

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/literature?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;…

解决 Not allowed to load local resource 问题

记录一下遇到的问题&#xff1a;html跳转本地资源&#xff0c;用相对路径 这样是不对的&#xff0c;要用 <script src"/jquery.min.js"></script> 网络路径也行&#xff0c;慢了一点 记得一定要关闭浏览器的广告屏蔽器 绝对路径也行&#xff0c;不过要…

STM32实现智能温控系统(暖手宝):PID 算法 + DS18B20+OLED 显示,[学习 PID 优质项目]

一、项目概述 本文基于 STM32F103C8T6 单片机&#xff0c;设计了一个高精度温度控制系统。通过 DS18B20 采集温度&#xff0c;采用位置型 PID 算法控制 PWM 输出驱动 MOS 管加热Pi膜&#xff0c;配合 OLED 实时显示温度数据。系统可稳定将 PI 膜加热至 40℃&#xff0c;适用于…

[深度学习]图像分类项目-食物分类

图像分类项目-食物分类(监督学习和半监督学习) 文章目录 图像分类项目-食物分类(监督学习和半监督学习)项目介绍数据处理设定随机种子读取文件内容图像增广定义Dataset类 模型定义迁移学习 定义超参Adam和AdamW 训练过程半监督学习定义Dataset类模型定义定义超参训练过程 项目介…

C++初阶入门基础二——类和对象(中)

1类的默认成员函数 默认成员函数就是用户没有显式实现&#xff0c;编译器会自动生成的成员函数称为默认成员函数。一个类&#xff0c;我们不写的情况下编译器会默认生成以下6个默认成员函数&#xff0c;需要注意的是这6个中最重要的是前4个&#xff0c;最后两个取地址重载不重…

基于SSM框架的线上甜品销售系统(源码+lw+部署文档+讲解),源码可白嫖!

摘要 网络技术和计算机技术发展至今&#xff0c;已经拥有了深厚的理论基础&#xff0c;并在现实中进行了充分运用&#xff0c;尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代&#xff0c;所以对于信息的宣传和管理就很关键。因此网上销售信息的…

3.25学习总结java 接口+内部类

JDK8以后新增的方法 可以将接口中静态方法和抽象方法中重复的部分抽离出来&#xff0c;作为私有方法&#xff0c;用去private修饰&#xff0c;此方法只为接口提供服务&#xff0c;不需要外界访问。 接口的应用 接口代表规则&#xff0c;是行为的抽象&#xff0c;想让哪个类拥有…

Linux--环境变量

ok&#xff0c;今天我们来学习Linux中的环境变量、地址空间、虚拟内存 环境变量 基本概念 环境变量(environmentvariables)⼀般是指在操作系统中⽤来指定操作系统运⾏环境的⼀些参数如&#xff1a;我们在编写C/C代码的时候&#xff0c;在链接的时候&#xff0c;从来不知道我…

Java 集合 List、Set、Map 区别与应用

一、核心特性对比 二、底层实现与典型差异 ‌List‌ ‌ArrayList‌&#xff1a;动态数组结构&#xff0c;随机访问快&#xff08;O(1)&#xff09;&#xff0c;中间插入/删除效率低&#xff08;O(n)&#xff09;‌‌LinkedList‌&#xff1a;双向链表结构&#xff0c;头尾操作…

基于 arco 的 React 和 Vue 设计系统

arco 是字节跳动出品的企业级设计系统&#xff0c;支持React 和 Vue。 安装模板工具 npm i -g arco-cli创建项目目录 cd someDir arco init hello-arco-pro? 请选择你希望使用的技术栈React❯ Vue? 请选择一个分类业务组件组件库Lerna Menorepo 项目❯ Arco Pro 项目看到以…

JVM-GC(G1)实践—GC异常定位、参数调整、GC更换

前言 如SpringBoot官方介绍所说的那样&#xff0c;从SpringBoot3.x开始支持的最低JDK版本为&#xff1a;JDK17&#xff08;官方推荐使用BellSoft Liberica JDK&#xff09;&#xff0c;其对应的GC为G1。 本文笔者从应用实践的角度出发&#xff0c;记录一些关于GC的一些实践总…