个体内比较不同自动化背景增强(BPE)评估方法在乳腺MRI中的效果:| 文献速递-基于深度学习的乳房、前列腺疾病诊断系统

Title

题目

Intraindividual Comparison of Different Methods for Automated BPE Assessment at Breast MRI:

个体内比较不同自动化背景增强(BPE)评估方法在乳腺MRI中的效果:

Background

背景

The level of background parenchymal enhancement (BPE) at breast MRI provides predictive and prognostic information and can have diagnostic implications. However, there is a lack of standardization regarding BPE assessment.

乳腺MRI中的背景实质增强(BPE)水平提供了预测和预后信息,并可能具有诊断意义。然而,目前关于BPE评估的标准化仍然缺乏。

Method

方法

In this pseudoprospective analysis of 5773 breast MRI examinations from 3207 patients (mean age, 60 years ± 10 [SD]), the level of BPE was prospectively categorized according to the Breast Imaging Reporting and Data System by radiologists experienced in breast MRI. For automated extraction of BPE, fibroglandular tissue (FGT) was segmented in an automated pipeline. Four different published methods for automated quantitative BPE extractions were used: two methods (A and B) based on enhancement intensity and two methods (C and D) based on the volume of enhanced FGT. The results from all methods were correlated, and agreement was investigated in comparison with the respective radiologist-based categorization. For surrogate validation of BPE assessment, how accurately the methods distinguished premenopausal women with (n = 50) versus without (n = 896) antihormonal treatment was determined.

在对3207名患者(平均年龄60岁 ± 10 [SD])的5773例乳腺MRI检查进行的伪前瞻性分析中,背景实质增强(BPE)的水平由经验丰富的乳腺MRI放射科医师按照乳腺影像报告和数据系统(BI-RADS)进行前瞻性分类。为了自动提取BPE,纤维腺体组织(FGT)在自动化流程中被分割。使用了四种不同的已发布的自动化定量BPE提取方法:两种方法(A和B)基于增强强度,两种方法(C和D)基于增强FGT的体积。对所有方法的结果进行了相关性分析,并与放射科医师基于分类的结果进行了比较。为了验证BPE评估的替代准确性,评估了这些方法区分接受(n = 50)与未接受(n = 896)抗激素治疗的围绝经期女性的准确性。

Conclusion

结论

Results of different methods for quantitative BPE assessment agree only moderately among themselves or with visual categories reported by experienced radiologists; intensity-based methods correlate more closely with radiologists’ ratings than volumebased methods.

不同的定量背景实质增强(BPE)评估方法之间的结果仅有中等程度的一致性,与经验丰富的放射科医师报告的视觉分类也只有适度的一致性。基于强度的方法与放射科医师的评分的相关性比基于体积的方法更高。

Results

结果

Intensity-based methods (A and B) exhibited a correlation with radiologist-based categorization of 0.56 ± 0.01 and 0.55 ± 0.01, respectively, and volume-based methods (C and D) had a correlation of 0.52 ± 0.01 and 0.50 ± 0.01 (P < .001). There were notable correlation differences (P < .001) between the BPE determined with the four methods. Among the four quantitation methods, method D offered the highest accuracy for distinguishing women with versus without antihormonal therapy (P = .01).

基于强度的方法(A和B)与放射科医师分类的相关性分别为0.56 ± 0.01和0.55 ± 0.01,而基于体积的方法(C和D)的相关性分别为0.52 ± 0.01和0.50 ± 0.01(P < .001)。四种方法之间的BPE结果存在显著的相关性差异(P < .001)。在这四种定量方法中,方法D在区分接受与未接受抗激素治疗的女性方面提供了最高的准确性(P = .01)。

Figure

图片

Figure 1: Study flow diagram. BI-RADS = Breast Imaging Reporting and Data System, BPE = background parenchymal enhancement, FGT = fibroglandular tissue

图1: 研究流程图。BI-RADS = 乳腺影像报告和数据系统,BPE = 背景实质增强,FGT = 纤维腺体组织

图片

Figure 2: Violin plots show quantitative versus qualitative assessment of background parenchymal enhancement (BPE). The x-axis denotes the American College of Radiology (ACR) Breast Imaging Reporting and Data System category as determined by radiologists experienced in breast MRI. The y-axis denotes the quantitative value determined with methods A, B, C, and D. The correlation coefficient between qualitative and quantitative assessment was 0.56 for method A, 0.55 for method B, 0.52 for method C, and 0.50 for method D.

图2: 小提琴图显示了背景实质增强(BPE)的定量评估与定性评估的对比。x轴表示由经验丰富的乳腺MRI放射科医师确定的美国放射学会(ACR)乳腺影像报告和数据系统(BI-RADS)分类。y轴表示使用方法A、B、C和D确定的定量值。定性评估与定量评估之间的相关系数分别为方法A的0.56,方法B的0.55,方法C的0.52,以及方法D的0.50。

图片

Figure 3: Maximum intensity projections of the subtraction between the first postcontrast and precontrast sequences of illustrative axial MRI examinations along with the American College of Radiology (ACR) Breast Imaging Reporting and Data System categories assigned by the radiologist and the automated methods. The upper part of the figure displays illustrative examinations that exhibit agreement among all methods and with the radiologists’ assessments. In the lower part of the figure, method A is in agreement with the qualitative rating by the radiologists, while methods B, C, and D exhibit deviations from the radiologists’ rating. Note that the projections may show subtraction artifacts due to motion between the pre- and postcontrast T1-weighted images, but this does not influence method A, as it determines the intensity on the pre- and postcontrast images independently. BPE = background parenchymal enhancement.

图3: 轴位MRI检查中,最大强度投影显示了首次对比增强与前对比序列之间的减法图像,以及由放射科医师和自动化方法分配的美国放射学会(ACR)乳腺影像报告和数据系统(BI-RADS)分类。图的上部展示了所有方法与放射科医师评估结果一致的示例检查。在图的下部,方法A与放射科医师的定性评级一致,而方法B、C和D则显示出与放射科医师评级的偏差。请注意,由于预对比和后对比T1加权图像之间的运动,投影可能会出现减法伪影,但这不会影响方法A,因为方法A独立于前后对比图像确定强度。BPE = 胶原质背景增强。

Table

图片

Table 1: Formulas Used by Previous Studies to Quantitate BPE

表1: 以往研究中用于量化背景实质增强(BPE)的公式

图片

Table 2: Relative BPE (Methods A and B) and Volume Fraction (Methods C and D) within Each of the Four BPE BI-RADS Categoris

表2: 四种背景实质增强(BPE)BI-RADS分类中相对BPE(方法A和B)与体积分数(方法C和D)的比较

图片

Table 3: Optimal Intervals to Separate the Quantitative BPE Values Into the Four BPE BI-RADS Categories Based on the ROC Analyses

表3: 基于ROC分析将定量BPE值划分为四个BPE BI-RADS类别的最佳区间

图片

Table 4: Correlation between the Four BPE Methods

表4: 四种BPE方法之间的相关

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/400811.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

flutter 画转盘

import package:flutter/material.dart; import dart:math;const double spacingAngle 45.0; // 每两个文字之间的角度 // 自定义绘制器&#xff0c;ArcTextPainter 用于在圆弧上绘制文字 class ArcTextPainter extends CustomPainter {final double rotationAngle; // 动画旋…

elementplus 二次封装 select 自定义指令上拉加载更多 完美解决 多次接口调用 重新加载数据多次调用数据!!!

效果&#xff1a;&#xff08;名字都是测试数据 随便乱写的 若有冒犯 请联系&#xff09; select 二次封装 网上的这种自定义指令上拉加载更多的实例有很多&#xff0c;但是基本都是有缺陷和问题的。为了记录这个问题 我研究了一天&#xff0c;在今天终于搞定了 呜呜呜。 网上…

TSP-Detection:CMU 提出抛弃交叉注意力的 DETR 变体 | ICCV 2021

DETR基于Transformer将目标检测视为集合预测问题&#xff0c;实现了最先进的性能&#xff0c;但需要超长的训练时间才能收敛。论文研究了DETR优化困难的原因&#xff0c;揭示了收敛缓慢因素主要是匈牙利损失和Transformer交叉注意机制。为了克服这些问题&#xff0c;论文提出了…

微信小程序--26(全局配置-1)

一、全局配置文件 1.标志 app.json 2.配置项 pages 记录当前小程序所有页面的存放路径 window 全局配置小程序窗口配置 tabBar 设置小程序底部的tabBar效果 style 是否启用新版本的组将样式 3.window 导航栏区域 navigationBar …

11 Linux 设备驱动

11 Linux 设备驱动 1、Linux软件特点1.1 用户空间1.2 内核空间 2、Linux程序2.1 应用程序2.2 内核程序2.2.1 编程2.2.2 编译 2.3 内核命令行传参2.3.1 应用程序的命令行传参2.3.2 内核程序命令行传参 2.4 内核程序符号导出2.4.1 应用程序多文件之间的访问调用2.4.1 内核多文件之…

1Panel应用推荐:KubePi开源Kubernetes管理面板

1Panel&#xff08;github.com/1Panel-dev/1Panel&#xff09;是一款现代化、开源的Linux服务器运维管理面板&#xff0c;它致力于通过开源的方式&#xff0c;帮助用户简化建站与运维管理流程。为了方便广大用户快捷安装部署相关软件应用&#xff0c;1Panel特别开通应用商店&am…

H7-TOOL混合脱机烧录以及1拖4不同的通道烧录不同的程序操作说明(2024-08-07)

【应用场景】 原本TOOL的1拖4是用于同时烧录相同程序给目标板&#xff0c;但有时候一个板子上有多个不同的MCU&#xff0c; 客户希望仅通过一个TOOL就可以完成对板子上多个MCU的烧录&#xff0c;也就是1拖4不同的通道烧录不同的程序&#xff0c;此贴为此制作。 【实验目标】…

序列建模之循环和递归网络 - 循环神经网络篇

序言 在探索序列数据的深层规律时&#xff0c;循环神经网络&#xff08; RNN \text{RNN} RNN&#xff09;以其独特的设计思想成为了序列建模领域的中流砥柱。与传统的神经网络不同&#xff0c; RNN \text{RNN} RNN引入了循环结构&#xff0c;使得网络能够处理任意长度的序列数…

winform 大头针实现方法——把窗口钉在最上层

平时我们再使用成熟的软件的时候&#xff0c;会发现有个大头针的功能挺不错的。就是点一下大头针&#xff0c;窗口就会钉住&#xff0c;一直保持在最上面一层&#xff0c;这样可以一边设置参数&#xff0c;一边观察这个窗口里面的变化&#xff0c;比较方便。下面我就来简单实现…

移动APP测试有哪些注意事项?专业APP测试报告如何获取?

移动APP在其生命周期中有不同的阶段&#xff0c;从开始到投入目标市场再到被淘汰。移动APP的成功有多种因素&#xff0c;例如创建、部署、推广、粘性等。但是&#xff0c;创建出色APP的关键在于它的测试&#xff0c;软件测试负责为客户提供安全有效的产品&#xff0c;因此移动A…

大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…

Golang 与 Java:编程语言比较及如何选择

Golang 与 Java&#xff1a;哪种语言更好&#xff1f;我们的详细比较指南涵盖了语法、性能和流行度方面的主要差异&#xff0c;以帮助您做出决定。 在规划项目时&#xff0c;有许多编程语言可供选择。但一开始就选择正确的语言是成功启动或交付的关键。选择错误的语言&#xff…

Apache Tomcat 信息泄露漏洞排查处理CVE-2024-21733)

一、漏洞描述 Apache Tomcat作为一个流行的开源Web服务器和Java Servlet容器并用于很多中小型项目的开发中。其中,Coyote作为Tomcat的连接器组件,是Tomcat服务器提供的供客户端访问的外部接口,客户端通过Coyote与服务器建立链接、发送请求并且接收响应。 近日发现Apache To…

【python】OpenCV—Optical Flow

文章目录 1、光流2、Opencv 中光流的实现3、稀疏光流4、密集光流4.1、farneback4.2、lucaskanade_dense4.3、rlof 5、涉及到的库5.1、cv2.goodFeaturesToTrack5.2、cv2.calcOpticalFlowPyrLK5.3、cv2.optflow.calcOpticalFlowSparseToDense5.4、cv2.calcOpticalFlowFarneback5.…

CentOS7.9上通过KVM安装Centos虚拟机

目录 1 开发前准备&#xff08;先确保服务器可以虚拟化&#xff09;&#xff1a; 2、安装KWM环境 3、创建镜像文件存放目录 4、创建镜像文件存放目录 5、安装桥连接虚拟网络 6、安装虚拟机 7、配置操作系统 8、虚拟机配置网卡地址 9、克隆虚拟机执行 1开发前准备&am…

Unity教程(十)Tile Palette搭建平台关卡

Unity开发2D类银河恶魔城游戏学习笔记 Unity教程&#xff08;零&#xff09;Unity和VS的使用相关内容 Unity教程&#xff08;一&#xff09;开始学习状态机 Unity教程&#xff08;二&#xff09;角色移动的实现 Unity教程&#xff08;三&#xff09;角色跳跃的实现 Unity教程&…

IDEA 创建类时自动生成注释

一、背景 在开发的过程中&#xff0c;公司都会要求开发针对自己创建的类进行一些描述说明&#xff0c;为了便于程序员在创建类时快速生成注释。 二、如何配置? 打开File -> Settings -> Editor -> File and Code Templates -> Includes&#xff0c;在File Header…

Unity新输入系统结构概览

本文仅作笔记学习和分享&#xff0c;不用做任何商业用途 本文包括但不限于unity官方手册&#xff0c;unity唐老狮等教程知识&#xff0c;如有不足还请斧正 在学习新输入系统之前&#xff0c;我们需要对其构成有个印象 1.输入动作&#xff08;Inputaction&#xff09; 是定义输…

一次caffeine引起的CPU飙升问题

背景 背景是上游服务接入了博主团队提供的sdk&#xff0c;已经长达3年&#xff0c;运行稳定无异常&#xff0c;随着最近冲业绩&#xff0c;流量越来越大&#xff0c;直至某一天&#xff0c;其中一个接入方&#xff08;流量很大&#xff09;告知CPU在慢慢上升且没有回落的迹象&…

2分钟搭建一个简单的WebSocket服务器

你好同学&#xff0c;我是沐爸&#xff0c;欢迎点赞、收藏和关注。个人知乎 如何用2分钟在本地搭建一个简单的 WebSocket 服务器&#xff1f;其实使用 Node.js&#xff0c;加上一些流行的库&#xff0c;是很容易实现的。前端同学通过自己搭建 WebSocket 服务器&#xff0c;对于…