PUMA论文阅读

PUMA: Efficient Continual Graph Learning with Graph Condensation

PUMA:通过图压缩进行高效的连续图学习

ABSTRACT

在处理流图时,现有的图表示学习模型会遇到灾难性的遗忘问题,当使用新传入的图进行学习时,先前学习的这些模型的知识很容易被覆盖。作为回应,持续图学习(CGL)作为一种新颖的范式出现,能够实现从静态图到流图的图表示学习。我们之前的工作 Condense and Train (CaT)是一个基于重放的 CGL 框架,具有平衡的持续学习过程,它设计了一个小而有效的内存库,用于通过压缩传入的图来重放数据。尽管CaT缓解了灾难性遗忘问题,但仍存在三个问题:(1)CaT中推导的图压缩算法仅关注标记节点,而忽略了未标记节点携带的丰富信息;(2)CaT的持续训练方案过分强调先前学到的知识,限制了模型从新添加的记忆中学习的能力;(3)CaT的压缩过程和重放过程都很耗时。 在本文中,我们提出了一种 PsUdo 标签引导记忆库(PUMA)CGL 框架,该框架从 CaT 扩展而来,通过克服上述弱点和限制来提高其效率和有效性。为了充分利用图中的信息,PUMA 在图压缩期间使用标记和未标记的节点扩展了节点的覆盖范围。此外,提出了一种从头开始的训练策略来升级之前的持续学习方案,以实现历史图和新图之间的平衡训练。此外,PUMA使用一次性prorogation和宽图编码器来加速训练阶段的图压缩和图编码过程,以提高整个框架的效率。 对四个数据集的广泛实验证明了现有方法的最先进的性能和效率。 代码已发布于https://github.com/superallen13/PUMA。

1 INTRODUCTION

首PUMA框架开发了一种伪标记来整合来自未标记节点的数据,增强了记忆库的信息量,解决了被忽视的未标记节点的问题。 其次,针对历史知识僵化的问题,设计了再培训策略。 这涉及在重放之前初始化整个模型,以平衡不同任务之间学到的知识,以获得更有效的决策边界,并确保更稳定的学习过程。最后,通过一次性传播方法简化了压缩过程中的重复消息传递计算,该方法一次性聚合整个传入图上相邻节点的消息,并且可以存储以供重复使用,从而显着减少了计算量。此外,还开发了包含更多神经元的宽图编码器来加速压缩过程中的收敛,从而提高压缩记忆的更新效率。最后,为了提高 CGL 模型的训练效率,提出了用多层感知器(MLP)来代替消息传递 GNN 的训练。由于其无边性质,PUMA 使 MLP 能够学习特征提取,并利用 GNN 来推断具有边缘的图。这些解决方案共同增强了基于图压缩的 CGL 框架的功效和效率。

本文提出了一种新颖的 PUMA框架,该框架是从 CaT 方法扩展而来的,具有以下实质性的新贡献:

  • 提出了一种伪标签引导记忆库,不仅可以利用全图中的信息来压缩标记节点,还可以压缩未标记节点。

  • 在重播阶段设计了再训练策略,以缓解所学知识不平衡的问题,从而获得有希望的整体表现。

  • 由于新开发的一次性传播、宽图编码器和带无边缘存储器的 MLP 训练等创新技术,压缩和训练速度显着提高,而不会影响性能。

  • 对四个数据集进行了广泛的实验和深入的分析,展示了PUMA 的有效性和效率。

CGL问题有两种不同的连续设置,任务增量学习(task-IL)和类增量学习(class-IL)。在task-IL中,模型只需要区分同一任务中的节点。 在 class-IL 中,模型需要对所有任务中的节点进行分类。

4 METHODOLOGY

PUMA 首先考虑带有伪标签的未标记节点来压缩输入图。PUMA 更新后,模型将从头开始使用 PUMA 初始化所有权重和训练。

img

4.1 Fast Graph Condensation by Distribution Matching

基于压缩的内存库存储压缩的合成图以近似历史数据分布。开发了一种具有分布匹配的高效图压缩方法,旨在保持合成数据与原始数据相似的数据分布。该方法用作重放图生成。

对于任务 T K \mathcal{T}_{K} TK,输入图 G k = { A k , X k , Y k } \mathcal{G}_{k}=\{\mathbf{A}_{k},\mathbf{X}_{k},\mathbf{Y}_{k}\} Gk={Ak,Xk,Yk},通过图压缩生成无边压缩图 G ~ k = { X ~ k , Y ~ k } \tilde{\mathcal{G}}_{k}=\{\tilde{\boldsymbol{X}}_{k},\tilde{\boldsymbol{Y}}_{k}\} G~k={X~k,Y~k}。在分布匹配方案下,图压缩的目标函数:

G ~ k ∗ = arg ⁡ min ⁡ G ~ k D i s t ( G k , G ~ k ) , \tilde{\mathcal{G}}_k^*=\arg\min_{\tilde{\mathcal{G}}_k}\mathrm{Dist}(\mathcal{G}_k,\tilde{\mathcal{G}}_k), G~k=argG~kminDist(Gk,G~k),

为了有效地操作压缩过程,这里使用具有随机权重的特征编码器而无需训练。分布匹配的目标是最小化具有随机参数 θ p \theta_p θp 的 GNN 给出的不同嵌入空间中的嵌入距离:

min ⁡ G ~ k ∑ θ p ∼ Θ ℓ M M D , θ p , \min_{{\tilde{\mathcal{G}}_{k}}}\sum_{{\theta_{p}\sim\Theta}}\ell_{{\mathrm{MMD},\theta_{p}}}, G~kminθpΘMMD,θp,

4.2 Pseudo Label-guided Edge-free Memory Bank

只有具有高置信度分数的伪标签才会被添加到分布匹配中。将来自分类器的节点 v v v 的 Logits 输入到 Softmax 函数中,以获得不同类的置信度分布:

c o n f i d e n c e ( v ) = max ⁡ ( S o f t m a x ( A , X ) [ v , : ] ) ) . \mathrm{confidence}(v)=\max(\mathrm{Softmax}(\mathbf{A},\mathbf{X})_{[v,:]})). confidence(v)=max(Softmax(A,X)[v,:])).

在获得伪标签的置信度分数后,可以使用阈值来过滤掉更确定的伪标签以减少噪声标签。分布匹配算法可以利用扩大的训练集来精确浓缩。PUMA的整体流程如算法1所示。PUMA 包含无边图,可以有效地存储在内存中并由 MLP 模型进行训练。

img

4.3 Train in Memory from Scratch

在PUMA中,由于基于压缩的存储体能够在不影响性能的情况下减小图的大小,因此通过使用压缩的输入图而不是整个输入图来解决不平衡问题是合理的。当输入图 G k \mathcal G_k Gk到达时,首先生成压缩图 G ~ k \tilde{\mathcal G}_k G~k,然后用它来更新之前的记忆 M k − 1 \mathcal M_{k−1} Mk1

M k = M k − 1 ∪ G ~ k . \mathcal{M}_{k}=\mathcal{M}_{k-1}\cup\tilde{\mathcal{G}}_{k}. Mk=Mk1G~k.

CaT 将基于 M k \mathcal M_k Mk 更新模型,而不是使用 M k − 1 \mathcal M_{k−1} Mk1 G k \mathcal G_k Gk 进行训练来处理不平衡问题:

ℓ C a T = L ( M k ; θ k ) = L ( G ~ k ; θ k ) + L ( M k − 1 ; θ k ) . \begin{aligned}\ell_{\mathrm{CaT}}&=\mathcal{L}(\mathcal{M}_{k};\theta_{k})\\&=\mathcal{L}(\tilde{\mathcal{G}}_{k};\theta_{k})+\mathcal{L}(\mathcal{M}_{k-1};\theta_{k}).\end{aligned} CaT=L(Mk;θk)=L(G~k;θk)+L(Mk1;θk).

这个过程被称为内存训练(TiM),因为该模型仅使用内存库中重放的图进行训练。

另一方面,基于重播的持续学习模型通常会在新传入的图到达时不断更新其权重,而不是从头开始重新训练。这种训练方案可能会遇到损失不平衡的挑战,即新压缩图上的损失大于历史压缩图上的损失。

为了更好的优化,在学习形成新的记忆之前,每层的模型权重都会被重新初始化。CGL骨干模型的架构保持不变,例如在持续训练过程中隐藏层的数量和隐藏层的维度。

综上所述,所提出的CaT框架使用图压缩来生成小而有效的重放图,并应用TiM方案来解决CGL中的不平衡学习问题。PUMA的整体流程如算法2所示。

img

5 EXPERIMENTS

5.1 Setup

5.1.1 Datasets

使用了四个用于节点分类任务的数据集:CoraFull、Arxiv、Reddit 和Products。每个数据集被分为一系列专注于节点分类问题的任务。每个任务都包含两个唯一类的节点作为传入图。在每个任务中,选择 60% 的节点作为训练节点,20% 的节点用于验证,20% 的节点用于测试。

平均性能(AP)平均性能平均值(mAP)、后向迁移(BWT)

5.2 Overall Results

基于压缩的 CGL 方法与 class-IL 和 task-IL设置中的所有基线进行比较。AP用于评估任务流结束时所有学习任务的平均模型性能,BWT 暗示模型在持续学习过程中的遗忘问题。 表 2 显示了所有基线和 PUMA 在 class-IL设置中的整体性能。与所有其他 CGL 基线相比,CaT 实现了最先进的性能。此外,结果表明,基于压缩的记忆库具有较小的BWT,这意味着压缩不仅可以保留模型的历史知识,还可以在训练当前任务的同时减少对先前任务的负面影响,从而缓解灾难性遗忘问题。

Untitled 5.png

5.3 Ablation Study

PUMA 框架有两个关键组件:伪标签引导记忆库和再训练。不带 PL 的变体表示在压缩过程中仅使用标记节点,不带 Re 的变体表示 CGL 模型根据先前任务的学习知识更新其权重。根据表 4,与没有这两种组件的变体相比,使用 PL 的变体提高了 AP 和 mAP。经过重新训练的变体也能提高整体性能。

Untitled 7.png

5.4 Effectiveness and Efficiency of Condensation-based Memory Banks

5.4.1 Different Memory Banks

图 3 表明 PUMA 比现有的基于采样的存储体更有效。PUMA 更快地达到最佳性能。PUMA 在所有评估案例中均获得最佳表现。当预算比率相对较小(例如 0.005、0.01)时,PUMA 的性能显着优于其他基于采样的存储体。一方面,CaT和PUMA使用较少的内存空间来准确地近似历史数据分布。另一方面,在训练阶段,模型需要在记忆库中传播消息。因此,小的存储体可以提高存储和计算效率。

Untitled 8.png

5.5 Balanced Learning with TiM

5.5.1 Different Methods with TiM

TiM 是一种即插即用的训练方案,适用于所有现有的基于重放的 CGL 方法。表 5 显示了使用和不使用 TiM 的不同基于重放的 CGL 方法的 mAP。TiM可以确保CGL模型的训练图具有相似的大小来处理不平衡问题,从而可以解决灾难性遗忘问题。

Untitled 9.png

5.6 Effectiveness of Retraining

虽然TiM有效缓解了类训练样本不平衡的问题,但它在持续训练过程中引入了新的挑战:任务损失的不平衡。发生这种情况是因为之前添加到记忆库的记忆已经被充分学习,与后来添加的记忆相比,损失更小。为了缓解这个问题,提出了重新训练策略,从头开始训练内存中的 CGL 模型。

5.6.1 Effectiveness

再训练有助于重新校准模型的知识和对新数据和现有数据的适应性,从而提高其整体性能。表 6 展示了没有和有重新训练的不同基于重放的方法的 mAP。

Untitled 11.png

5.7 Condense More by Pseudo-Labelling

本研究评估了伪标签对基于重放的 CGL 方法(例如 ER-GNN、SSM、CaT 和 PUMA)准确性的影响。 比较涉及在记忆阶段有和没有整合伪标签的场景。表 7 显示了两种条件下不同 CGL 方法的 mAP。

Untitled 13.png

对于基于压缩的图存储器,结合伪标记被证明是有效的。但是伪标记技术对于当前基于采样的存储体并没有产生类似的好处。

5.8 Wide Graph Encoder

宽图编码器包含更多具有随机初始化权重的神经元,可以随机提取非线性特征。图 6 显示,减小由窄编码器生成的原始图嵌入和压缩图嵌入之间的距离是不够的,因为一旦编码器重新初始化,它们之间仍然存在明显的分布间隙。更宽的图形编码器可以缩小这一差距。

Untitled 14.png

一次可以获得的神经元越多,原始数据在初始化空间中的潜在变换就越清晰,也就越容易通过不同的网络拟合数据的分布。数据的准确分布是必要的,因为在持续学习中,新的类不断出现,并且在回放过程中,模型需要重新学习不同类之间的决策边界。然而,更多的神经元花费更多的计算资源,实际中使用多个随机编码器。

5.9 Parameter Sensitivity

5.9.1 Different Dimensional Graph Encoders

该实验探索了图编码器的足够维度来优化 MMD 损失。图7显示了在持续学习过程中处理每个传入任务后,由各种维度图编码器生成的PUMA训练的模型的AP(%)。

Untitled 15.png

当编码器维度由于计算资源有限而受到限制时,由于模型的参数初始化空间不完整,模型性能会下降。随着图编码器维度的增加,CGL模型的性能得到了显着的提高。它表明,为了更好地覆盖模型参数的初始化空间,宽编码器是必不可少的。当计算资源有限时,使用更多随机的相对较小的图编码器也可以获得匹配的性能,但需要更多的压缩时间。

5.9.2 Neuron Activation

CGL 的标准节点分类仍将使用具有激活函数的编码器。mAP 用于衡量有效性。表 8 说明,对于不同的预算比率,具有激活函数的编码器对于整体图编码来说是更具竞争力的选择。

Untitled 16.png

5.10 Time Efficiency

对于基于重放的 CGL 方法,内存生成和模型训练是需要计算资源的两个主要部分。对于基于采样的方法(例如 ER-GNN 和 SSM),内存生成过程非常高效。虽然基于采样的方法不能忽略图压缩时间,但模型精度比基于采样的方法要好得多。对于CaT,内存生成的主要计算成本是原始图中的特征聚合。PUMA的存储体是无边的,可以忽略训练阶段的特征聚合操作,每层的权重可以通过MLP模型来学习。

Untitled 17.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/401295.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c语言中比较特殊的输入格式

目录 一.%[ ] 格式说明符 1.基本用法 (1)读取字母字符: (2)读取数字字符: (3)读取所有字符直到遇到空格: (4)读取直到换行符: 2.使用范围和组合: 3.^ 取反操作 4.注意事项 (1). 字符范围的正确表示 (2). 避免字符集中的特殊字符冲突 (3).避免空字符集 (4). 输入长…

构建高效外贸电商系统的技术探索与源码开发

在当今全球化的经济浪潮中,外贸电商作为连接国内外市场的桥梁,其重要性日益凸显。一个高效、稳定、功能全面的外贸电商系统,不仅能够助力企业突破地域限制,拓宽销售渠道,还能提升客户体验,增强品牌竞争力。…

Wireshark过滤规则

一、按IP地址过滤 1、查看源IP为 xx 的包 ip.srcIP地址 例如:ip.src172.18.10.56 2、查看目标IP为 xx 的包 ip.dstIP地址 例如:ip.dst172.16.76.251 3、查看源或目标IP为 xx 的包 ip.addrIP地址 例如:ip.addr172.18.10.56 二、按MAC地…

数学建模--浅谈多波束测线问题

目录 1.问题说明 2.问题分析 3.代码分析 1.问题说明 这个是国赛的真题,我们这个里面只是浅谈,就是对于这个里面运用的过程仿真的思路进行说明,这个探测的波束问题实际上也是一个简单的过程仿真问题,也是需要去进行作图的&#…

【中等】 猿人学web第一届 第5题 js混淆-乱码增强

文章目录 请求流程请求参数cookie信息 加密参数定位Hook CookieAST 还原混淆代码解密函数还原字符串还原数组引用还原浏览器内置对象 / 变量值引用还原逗号表达式还原 unicode, 16进制数值字符串相加AST 解混淆完整代码 加密参数还原cookie m字段m字段坑点 cookie RM4hZBv0dDon…

什么是云原生?(二)

1. 云原生的定义 云原生指构建和运行应用以充分利用通过云技术交付模式交付的分布式计算。云原生应用旨在充分利用云技术平台特有的可扩展性、弹性和灵活性优势。 根据云原生计算基金会 (CNCF) 的定义,云原生技术可帮助企业在公有云、私有云和混合云环境中构建和…

Unity Render Streaming项目实践经验

UnityRenderStreaming项目 项目github地址见上,我使用项目的3.1.0-exp.7版本、Unity 2023.1.0版本、windows11运行。 1下载项目包 2在Unity Hub中打开RenderStreaming~文件夹 3在package manager中导入com.unity.renderstreaming package 因为已经下载过了就选择install pa…

Word中加载Mathtype后粘贴复制快捷键(Ctrl+C/V)不能使用

操作环境 windows 11操作系统 word版本2021 mathtype版本7.4 这个问题只出现在word中,在excel和ppt中都不存在这个问题,而且之前在另一台电脑中使用word2016版本并没有这种问题的,然后网上搜了一下有不少人有这种问题,word直接取…

Docker Containerd初体验

Docker Containerd概述 ​ Containerd是一个开源的容器运行时,它提供了一种标准化的方式来管理容器的生命周期。该项目最初是由Docker开发团队创建的,并在后来成为了一个独立的项目,被纳入了Cloud Native Computing Foundation(C…

Taos 常用命令工作笔记(二)

最近测试创建一个涛思的数据库和一堆表进行测试,通过json配置文件配置字段的类型、名称等,程序通过解析json文件的配置,动态创建数据库的表。 其中表字段为驼峰结构的规则命名,创建表也是成功的,插入的测试数据也是成功…

html页面缩放自适应

html页面缩放自适应 一、为什么页面要进行缩放自适应 在我们一般web端进行页面拼接完成后,在web端的显示正常(毕竟我们是按照web端进行页面拼接完成的),那么要是用其他设备打开呢,比如手机或者平板,这时候…

【Datawhale AI夏令营第四期】魔搭-AIGC方向 Task02笔记 Scepter工具箱, 精读BaseLine代码

【Datawhale AI夏令营第四期】魔搭-AIGC方向 Task02笔记 Task02学习任务: https://linklearner.com/activity/14/10/32 传送门 我们继续看网课,并且在Kimi.AI的帮助下读一下BaseLine示例代码。 网课链接:https://space.bilibili.com/1069874…

WebService基础学习

一、XML回顾 二、HTTP协议回顾 三、复习准备 四、关于Web Service的几个问题 五、Web Service中的几个重要术语 六、开发webservice 七、WebService面试题

比char类型小的变量——位段

目录 开头1.什么是位段?2.位段的优缺点优点缺点 3.位段的实际应用…… 结尾 开头 大家好,我叫这是我58。在今天,我们将要介绍一个既比char类型小,又只用于结构体的一种东西——位段。 1.什么是位段? 位段,就是一种比char类型…

SpringBoot的事务/调度/缓存/邮件发送和一些Spring知识点总结

目录 1、SpringBoot的事务管理 2、SpringBoot的异步任务 3、SpringBoot定时任务调度 4、SpringBoot整合Mail发送邮件 5、Spring框架中的Bean的作用域 6、Spring框架中的Bean的线程安全 7、 Spring框架中的Bean生命周期 8、Spring框架如何解决循环依赖? 9、…

考研数学想考120,把李林880做到准确率80%以上够吗?

考研数学想考120,把880题做到正确率80%以上是不够的 因为最近几年的考研数学变化,很大,传统的背题型的备考方式已经没用了,而880题是这种模式的佼佼者,25版的880变动又很小,只加了40道比较综合的题目在每一…

前端 JavaScript 的 _ 语法是个什么鬼?

前言 我们有时候会看这样的前端代码: const doubled _.map(numbers, function(num) { return num * 2; });刚接触前端的童鞋可能会有点惊奇,不知道这个 _ 是什么语法,为什么这么神通广大? 其实 _ 是 Lodash 或 Underscore.js …

推荐浏览器爬虫插件:Instant Data Scraper 无需写一行代码

✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…

24暑假算法刷题 | Day30 | 贪心算法 IV | LeetCode 452. 用最少数量的箭引爆气球,435. 无重叠区间,763. 划分字母区间

目录 452. 用最少数量的箭引爆气球题目描述题解 435. 无重叠区间题目描述题解 763. 划分字母区间题目描述题解 452. 用最少数量的箭引爆气球 点此跳转题目链接 题目描述 有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points ,其中…

传知代码-CENet及多模态情感计算实战(论文复现)

代码以及视频讲解 本文所涉及所有资源均在传知代码平台可获取 一、概述 本文对 “Cross-Modal Enhancement Network for Multimodal Sentiment Analysis” 论文进行讲解和手把手复现教学,解决当下热门的多模态情感计算问题,并展示在MOSI和MOSEI两个数…