差异基因富集分析(R语言——GOKEGGGSEA)

接着上次的内容,上篇内容给大家分享了基因表达量怎么做分组差异分析,从而获得差异基因集,想了解的可以去看一下,这篇主要给大家分享一下得到显著差异基因集后怎么做一下通路富集。

1.准备差异基因集

我就直接把上次分享的拿到这边了。我们一般都把差异基因分为上调基因和下调基因分别做通路富集分析。下面上代码,可能包含我的一些个人习惯,勿怪。显著差异基因的筛选条件根据个人需求设置哈。

##载入所需R包
library(readxl)
library(DOSE)
library(org.Hs.eg.db)
library(topGO)
library(pathview)
library(ggplot2)
library(GSEABase)
library(limma) 
library(clusterProfiler)
library(enrichplot)##edger
edger_diff <- diff_gene_Group
edger_diff_up <- rownames(edger_diff[which(edger_diff$logFC > 0.584962501),])
edger_diff_down <- rownames(edger_diff[which(edger_diff$logFC < -0.584962501),])##deseq2
deseq2_diff <- diff_gene_Group2
deseq2_diff_up <- rownames(deseq2_diff[which(deseq2_diff$log2FoldChange > 0.584962501),])
deseq2_diff_down <- rownames(deseq2_diff[which(deseq2_diff$log2FoldChange < -0.584962501),])##将差异基因集保存为一个list
gene_diff_edger_deseq2 <- list()
gene_diff_edger_deseq2[["edger_diff_up"]] <- edger_diff_up
gene_diff_edger_deseq2[["edger_diff_down"]] <- edger_diff_down
gene_diff_edger_deseq2[["deseq2_diff_up"]] <- deseq2_diff_up
gene_diff_edger_deseq2[["deseq2_diff_down"]] <- deseq2_diff_down
2.进行通路富集分析

这里主要介绍普通的GO&KEGG&GSEA的简单富集。筛选显著富集通路的筛选条件也是根据自己的需求决定,一般是矫正后P值小于0.05。我这里是省事,写了各list循环。

for (i in 1:length(gene_diff_edger_deseq2)){keytypes(org.Hs.eg.db)entrezid_all = mapIds(x = org.Hs.eg.db,  keys = gene_diff_edger_deseq2[[i]], keytype = "SYMBOL", #输入数据的类型column = "ENTREZID")#输出数据的类型entrezid_all  = na.omit(entrezid_all)  #na省略entrezid_all中不是一一对应的数据情况entrezid_all = data.frame(entrezid_all) ##GO富集##GO_enrich = enrichGO(gene = entrezid_all[,1],OrgDb = org.Hs.eg.db, keyType = "ENTREZID", #输入数据的类型ont = "ALL", #可以输入CC/MF/BP/ALL#universe = 背景数据集我没用到它。pvalueCutoff = 1,qvalueCutoff = 1, #表示筛选的阈值,阈值设置太严格可导致筛选不到基因。可指定 1 以输出全部readable = T) #是否将基因ID映射到基因名称。GO_enrich_data  = data.frame(GO_enrich)write.csv(GO_enrich_data,paste('GO_enrich_',names(gene_diff_edger_deseq2)[i], '.csv', sep = ""))GO_enrich_data <- GO_enrich_data[which(GO_enrich_data$p.adjust < 0.05),]write.csv(GO_enrich_data,paste('GO_enrich_',names(gene_diff_edger_deseq2)[i], '_filter.csv', sep = ""))###KEGG富集分析###KEGG_enrich = enrichKEGG(gene = entrezid_all[,1], #即待富集的基因列表keyType = "kegg",pAdjustMethod = 'fdr',  #指定p值校正方法organism= "human",  #hsa,可根据你自己要研究的物种更改,可在https://www.kegg.jp/brite/br08611中寻找qvalueCutoff = 1, #指定 p 值阈值(可指定 1 以输出全部)pvalueCutoff=1) #指定 q 值阈值(可指定 1 以输出全部)KEGG_enrich_data  = data.frame(KEGG_enrich)write.csv(KEGG_enrich_data, paste('KEGG_enrich_',names(gene_diff_edger_deseq2)[i], '.csv', sep = ""))KEGG_enrich_data <- KEGG_enrich_data[which(KEGG_enrich_data$p.adjust < 0.05),]write.csv(KEGG_enrich_data, paste('KEGG_enrich_',names(gene_diff_edger_deseq2)[i], '_filter.csv', sep = ""))
}
3.通路富集情况可视化

这里只介绍一种简单的气泡图,当然还有其他的自己去了解吧。

##GO&KEGG富集BPCCMFKEGG分面绘图需要分开处理一下,富集结果里的ONTOLOGYL列修改
GO_enrich_data_BP <- subset(GO_enrich_data, subset = GO_enrich_data$ONTOLOGY == "BP")
GO_enrich_data_CC <- subset(GO_enrich_data, subset = GO_enrich_data$ONTOLOGY == "CC")
GO_enrich_data_MF <- subset(GO_enrich_data, subset = GO_enrich_data$ONTOLOGY == "MF")##提取GO富集BPCCMF的top5
GO_enrich_data_filter <- rbind(GO_enrich_data_BP[1:5,], GO_enrich_data_CC[1:5,], GO_enrich_data_MF[1:5,])##重新整合进富集结果
GO_enrich@result <- GO_enrich_data_filter##处理KEGG富集结果
KEGG_enrich@result <- KEGG_enrich_data
ncol(KEGG_enrich@result)
KEGG_enrich@result$ONTOLOGY <- "KEGG"
KEGG_enrich@result <- KEGG_enrich@result[,c(10,1:9)]##整合GO KEGG富集结果
ego_GO_KEGG <- GO_enrich
ego_GO_KEGG@result <- rbind(ego_GO_KEGG@result, KEGG_enrich@result[1:5,])
ego_GO_KEGG@result$ONTOLOGY <- factor(ego_GO_KEGG@result$ONTOLOGY, levels = c("BP", "CC", "MF","KEGG"))##规定分组顺序##简单画图
pdf("edger_diff_up_dotplot.pdf", width = 7, height = 7)
dotplot(ego_GO_KEGG, split = "ONTOLOGY", title="UP-GO&KEGG", label_format = 60, color = "pvalue") + facet_grid(ONTOLOGY~., scale = "free_y")+theme(plot.title = element_text(hjust = 0.5, size = 13, face = "bold"), axis.text.x = element_text(angle = 90, hjust = 1))
dev.off()
4.气泡图如图所示

做了些处理,真实图片,左侧pathway是跟后面气泡一一对应的,当然还有其他可视化方式那就需要各位自己去探索了,谢谢!

5.GSEA富集分析

这里也是做一下简单的GSEA

##GSEA官方网站下载背景gmt文件并读入
geneset <- list()
geneset[["c2_cp"]] <- read.gmt("c2.cp.v2023.2.Hs.symbols.gmt")
geneset[["c2_cp_kegg_legacy"]] <- read.gmt("c2.cp.kegg_legacy.v2023.2.Hs.symbols.gmt")
geneset[["c2_cp_kegg_medicus"]] <- read.gmt("c2.cp.kegg_medicus.v2023.2.Hs.symbols.gmt")
geneset[["c2_cp_reactome"]] <- read.gmt("c2.cp.reactome.v2023.2.Hs.symbols.gmt")
geneset[["c3_tft"]] <- read.gmt("c3.tft.v2023.2.Hs.symbols.gmt")
geneset[["c4_cm"]] <- read.gmt("c4.cm.v2023.2.Hs.symbols.gmt")
geneset[["c5_go_bp"]] <- read.gmt("c5.go.bp.v2023.2.Hs.symbols.gmt")
geneset[["c5_go_cc"]] <- read.gmt("c5.go.cc.v2023.2.Hs.symbols.gmt")
geneset[["c5_go_mf"]] <- read.gmt("c5.go.mf.v2023.2.Hs.symbols.gmt")
geneset[["c6"]] <- read.gmt("c6.all.v2023.2.Hs.symbols.gmt")
geneset[["c7"]] <- read.gmt("c7.all.v2023.2.Hs.symbols.gmt")##进行GSEA富集分析,这里也是写了个循环
gsea_results <- list()
for (i in names(gene_diff)){geneList <- gene_diff[[i]]$logFCnames(geneList) <- toupper(rownames(gene_diff[[i]]))geneList <- sort(geneList,decreasing = T)for (j in names(geneset)){listnames <- paste(i,j,sep = "_")gsea_results[[listnames]] <- GSEA(geneList = geneList,TERM2GENE = geneset[[j]],verbose = F,pvalueCutoff = 0.1,pAdjustMethod = "none",eps=0)}
}##批量绘图,注意这里如果有空富集通路,会报错!
for (j in 1:nrow(gsea_results[[i]]@result)) {p <- gseaplot2(x=gsea_results[[i]],geneSetID=gsea_results[[i]]@result$ID[j], title = gsea_results[[i]]@result$ID[j]) pdf(paste(paste(names(gsea_results)[i], gsea_results[[i]]@result$ID[j], sep = "_"),".pdf",sep = ""))print(p)dev.off()}

6.GSEA富集最简单图形如下

分享到此结束了,希望对大家有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/4039.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试——期末复习

文章目录 前言软件缺陷软件开发的过程软件测试黑盒测试等价类划分判定表法因果图法边界值分析法 白盒测试配置测试兼容性测试外国语言测试易用性测试自动化测试和测试工具缺陷轰炸和beta测试 前言 由于本人拖延症严重而且成绩较差&#xff0c;所以才在考试结束将近一个星期后&…

嵌入式硬件篇---基本组合逻辑电路

文章目录 前言基本逻辑门电路1.与门&#xff08;AND Gate&#xff09;2.或门&#xff08;OR Gate&#xff09;3.非门&#xff08;NOT Gate&#xff09;4.与非门&#xff08;NAND Gate&#xff09;5.或非门&#xff08;NOR Gate&#xff09;6.异或门&#xff08;XOR Gate&#x…

数据结构漫游记:动态实现栈(stack)

嘿&#xff0c;各位技术潮人&#xff01;好久不见甚是想念。生活就像一场奇妙冒险&#xff0c;而编程就是那把超酷的万能钥匙。此刻&#xff0c;阳光洒在键盘上&#xff0c;灵感在指尖跳跃&#xff0c;让我们抛开一切束缚&#xff0c;给平淡日子加点料&#xff0c;注入满满的pa…

微信小程序-base64加解密

思路&#xff1a;先创建一个base64.js的文件&#xff0c;这个文件可以作为专门加解密的文件模块&#xff0c;需要时就引用&#xff1b;创建好后&#xff0c;引用base64.js里的加解密函数。 注意&#xff1a;引用模块一定要引用正确的路径&#xff0c;否则会报错。 base64.js:…

RabbitMQ--延迟队列

&#xff08;一&#xff09;延迟队列 1.概念 延迟队列是一种特殊的队列&#xff0c;消息被发送后&#xff0c;消费者并不会立刻拿到消息&#xff0c;而是等待一段时间后&#xff0c;消费者才可以从这个队列中拿到消息进行消费 2.应用场景 延迟队列的应用场景很多&#xff0c;…

口令攻击和钓鱼攻击

口令攻击和钓鱼攻击 1、实验说明 口令攻击和钓鱼攻击是生活中两种较为常见的攻击方式&#xff0c; 通过对攻击过程的复现&#xff0c; 能够让学生对其有直观的认识&#xff0c; 进而思考相应的防范措施。 2、实验目的 &#xff08;1 &#xff09;能够了解实验规范和实验所需…

考前64天 学习笔记 - 形成“习惯体系”进行最小启动

从2025年1月18日到3月22日还剩64天 一、备考心态 这几天摆烂&#xff0c;并没有怎么学&#xff0c;败在了游戏和短视频上。 每分每秒都在抵御其他诱惑 科学表明&#xff1a;人在做自己不喜欢的事情&#xff0c;意志力最多能挺25分钟 如何稳定自己的心态&#xff0c;答案就在…

【python_钉钉群发图片】

需求&#xff1a; **在钉钉群发图片&#xff0c;需要以图片的形式展示&#xff0c;如图所示&#xff1a;**但是目前影刀里面没有符合条件的指令 解决方法&#xff1a; 1、在钉钉开发者后台新建一个自建应用&#xff0c;发版&#xff0c;然后获取里面的appkey和appsecret&am…

R数据分析:有调节的中介与有中介的调节的整体介绍

单独的有调节的中介或者有中介的调节好多同学还大概能看明白,但是两个东西一起说我发现大部分同学就懵逼了。今天我就尝试将两种方法一起讲讲,重点帮助大家厘清两种方法的异同。 先从整体上看下两者的概念: 有中介的调节首先落脚在调节,调节作用必须是显著的,并且这个调…

DETR论文阅读

1. 动机 传统的目标检测任务需要大量的人工先验知识&#xff0c;例如预定义的先验anchor&#xff0c;NMS后处理策略等。这些人工先验知识引入了很多人为因素&#xff0c;且较难处理。如果能够端到端到直接生成目标检测结果&#xff0c;将会使问题变得很优雅。 2. 主要贡献 提…

天机学堂5-XxlJobRedis

文章目录 梳理前面的实现&#xff1a;Feign点赞改进 day07-积分系统bitmap相关命令签到增加签到记录计算本月已连续签到的天数查询签到记录 积分表设计签到-->发送RabbitMQ消息&#xff0c;保存积分对应的消费者&#xff1a;**消费消息 用于保存积分**增加积分查询个人今日积…

万字长文介绍ARINC 653,以及在综合模块化航空电子设备(IMA)中的作用

文章目录 一、引言二、ARINC 653背景三、整体系统架构四、应用/执行&#xff08;APEX&#xff09;接口五、ARINC 653 RTOS内部机制六、健康监测功能七、软件应用八、ARINC 653现状九、总结 一、引言 在现代航空领域&#xff0c;综合模块化航空电子设备&#xff08;IMA&#xf…

认识 MySQL 和 Redis 的数据一致性问题

参考&#xff1a;https://zhuanlan.zhihu.com/p/429637485 1. 什么是数据的一致性 “数据一致”一般指的是&#xff1a;缓存中有数据&#xff0c;缓存的数据值 数据库中的值。 但根据缓存中是有数据为依据&#xff0c;则”一致“可以包含两种情况&#xff1a; 缓存中有数据…

【论文笔记】SmileSplat:稀疏视角+pose-free+泛化

还是一篇基于dust3r的稀疏视角重建工作&#xff0c;作者联合优化了相机内外参与GS模型&#xff0c;实验结果表明优于noposplat。 abstract 在本文中&#xff0c;提出了一种新颖的可泛化高斯方法 SmileSplat&#xff0c;可以对无约束&#xff08;未标定相机的&#xff09;稀疏多…

创建 pdf 合同模板

创建 pdf 合同模板 一、前言二、模板展示三、制作过程 一、前言 前段时间要求创建“pdf”模板&#xff0c;学会了后感觉虽然简单&#xff0c;但开始也折腾了好久&#xff0c;这里做个记录。 二、模板展示 要创建这样的模板 三、制作过程 新建一个“Word”&#xff0c;这里命…

电力场景红外测温图像绝缘套管分割数据集labelme格式2436张1类别

数据集格式&#xff1a;labelme格式(不包含mask文件&#xff0c;仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数)&#xff1a;2436 标注数量(json文件个数)&#xff1a;2436 标注类别数&#xff1a;1 标注类别名称:["arrester"] 每个类别标注的框数&am…

【网络协议】RFC3164-The BSD syslog Protocol

引言 Syslog常被称为系统日志或系统记录&#xff0c;是一种标准化的协议&#xff0c;用于网络设备、服务器和应用程序向中央Syslog服务器发送日志消息。互联网工程任务组&#xff08;IETF&#xff09;发布的RFC 3164&#xff0c;专门定义了BSD Syslog协议的规范和实现方式。通…

正态分布检验(JB检验和威尔克检验)和斯皮尔曼相关系数(继上回)

正态分布的检验 1,JB检验(n>30) (1)偏度和峰度 描述函数正不正&#xff0c;高不高的 Matlab中计算偏度和峰度的函数是&#xff1a;skewness() 和 kurtosis() 我们以normrnd来生成一个100*1的均值为2,标准差为3的正态分布(这里采用的第一个公式) 得到下面的数据,因为这个…

搭建一个基于Spring Boot的书籍学习平台

搭建一个基于Spring Boot的书籍学习平台可以涵盖多个功能模块&#xff0c;例如用户管理、书籍管理、学习进度跟踪、笔记管理、评论和评分等。以下是一个简化的步骤指南&#xff0c;帮助你快速搭建一个基础的书籍学习平台。 — 1. 项目初始化 使用 Spring Initializr 生成一个…

基于Python的心电图报告解析与心电吸引子绘制

一、引言 1.1 研究背景与意义 心脏作为人体的核心器官&#xff0c;其正常电活动对于维持生命活动至关重要。心电图&#xff08;Electrocardiogram&#xff0c;ECG&#xff09;作为记录心脏电活动随时间变化的重要工具&#xff0c;能够直观反映心脏的节律、传导等功能状态&…