Top期刊算法!RIME-CNN-BiLSTM-Attention系列四模型多变量时序预测

Top期刊算法!RIME-CNN-BiLSTM-Attention系列四模型多变量时序预测

目录

    • Top期刊算法!RIME-CNN-BiLSTM-Attention系列四模型多变量时序预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

基于RIME-CNN-BiLSTM-Attention、CNN-BiLSTM-Attention、RIME-CNN-BiLSTM、CNN-BiLSTM四模型多变量时序预测一键对比(仅运行一个main即可)

Matlab代码,每个模型的预测结果和组合对比结果都有!
1.无需繁琐步骤,只需要运行一个main即可一键出所有图像。
2.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!
3.RIME优化参数为:隐藏层节点数,学习率,正则化系数。
4.霜冰优化算法(RIME)是一种新型的智能优化算法,灵感来源于模拟霜冻冰的形成过程。该成果发表在SCI二区Top期刊《Neurocomputing》上!
5.运行环境要求MATLAB版本为2023b及其以上。
评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多
代码中文注释清晰,质量极高,赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白

程序设计

  • 完整代码私信回复Top期刊算法!RIME-CNN-BiLSTM-Attention系列四模型多变量时序预测
%% 打印评价指标结果
disp('CNN-LSTM模型:');
disp(['训练集 RMSE:', num2str(RMSE_train_CNN_LSTM), ', 测试集 RMSE:', num2str(RMSE_test_CNN_LSTM)]);
disp(['训练集 MSE:', num2str(MSE_train_CNN_LSTM), ', 测试集 MSE:', num2str(MSE_test_CNN_LSTM)]);
disp(['训练集 R²:', num2str(R2_train_CNN_LSTM), ', 测试集 R²:', num2str(R2_test_CNN_LSTM)]);
disp(['训练集 MAE:', num2str(MAE_train_CNN_LSTM), ', 测试集 MAE:', num2str(MAE_test_CNN_LSTM)]);
disp(['训练集 MAPE:', num2str(MAPE_train_CNN_LSTM), '%, 测试集 MAPE:', num2str(MAPE_test_CNN_LSTM), '%']);disp('RIME-CNN-LSTM模型:');
disp(['训练集 RMSE:', num2str(RMSE_train_WOA_CNN_LSTM), ', 测试集 RMSE:', num2str(RMSE_test_WOA_CNN_LSTM)]);
disp(['训练集 MSE:', num2str(MSE_train_WOA_CNN_LSTM), ', 测试集 MSE:', num2str(MSE_test_WOA_CNN_LSTM)]);
disp(['训练集 R²:', num2str(R2_train_WOA_CNN_LSTM), ', 测试集 R²:', num2str(R2_test_WOA_CNN_LSTM)]);
disp(['训练集 MAE:', num2str(MAE_train_WOA_CNN_LSTM), ', 测试集 MAE:', num2str(MAE_test_WOA_CNN_LSTM)]);
disp(['训练集 MAPE:', num2str(MAPE_train_WOA_CNN_LSTM), '%, 测试集 MAPE:', num2str(MAPE_test_WOA_CNN_LSTM), '%']);disp('CNN-LSTM-Attention模型:');
disp(['训练集 RMSE:', num2str(RMSE_train_CNN_LSTM_Attention), ', 测试集 RMSE:', num2str(RMSE_test_CNN_LSTM_Attention)]);
disp(['训练集 MSE:', num2str(MSE_train_CNN_LSTM_Attention), ', 测试集 MSE:', num2str(MSE_test_CNN_LSTM_Attention)]);
disp(['训练集 R²:', num2str(R2_train_CNN_LSTM_Attention), ', 测试集 R²:', num2str(R2_test_CNN_LSTM_Attention)]);
disp(['训练集 MAE:', num2str(MAE_train_CNN_LSTM_Attention), ', 测试集 MAE:', num2str(MAE_test_CNN_LSTM_Attention)]);
disp(['训练集 MAPE:', num2str(MAPE_train_CNN_LSTM_Attention), '%, 测试集 MAPE:', num2str(MAPE_test_CNN_LSTM_Attention), '%']);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/4052.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

日志收集Day002

1.ES的常见术语 索引(index): 用户写入ES集群的逻辑单元。 分片(shard): 一个索引最少一个分片。 将索引的数据分布式的存储在ES集群。 副本(replica): 一个分片可以有0个或多个副本。 为同一个分片数据提供数据冗余。 文档(docment): …

微服务入门:从零开始构建你的微服务架构

微服务是一种软件开发架构风格,它把一个大的应用程序拆分成一系列小的服务。这些小的服务各自独立运行在自己的进程中,并通过轻量级的通信机制(比如HTTP API)进行交互。要通俗地理解微服务,可以从以下几个方面入手&…

Ubuntu 22.04 TLS 忘记root密码,重启修改的解决办法

1.想办法进入这个界面,我这里是BIOS引导的是按Esc按一下就行,UEFI的貌似是按Shift不得而知,没操作过。下移到Advanced options for Ubuntu,按enter 2.根据使用的内核版本,选择带「recovery mode」字样的内核版本&#…

电子电气架构 --- ECU故障诊断指南

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身…

Linux(DISK:raid5、LVM逻辑卷)

题目: DISK 添加4块大小均为10G的虚拟磁盘,配置raid-5磁盘。创建LVM命名为/dev/vg01/lv01,大小为20G,格式化为ext4,挂在到本地目录/webdata,在分区内建立测试空文件disk.txt。[root@storagesrv ~]# yum install mdadm -y [root@storagesrv ~]# mdadm -C -n 3 -l 5 -a y…

差异基因富集分析(R语言——GOKEGGGSEA)

接着上次的内容,上篇内容给大家分享了基因表达量怎么做分组差异分析,从而获得差异基因集,想了解的可以去看一下,这篇主要给大家分享一下得到显著差异基因集后怎么做一下通路富集。 1.准备差异基因集 我就直接把上次分享的拿到这…

软件测试——期末复习

文章目录 前言软件缺陷软件开发的过程软件测试黑盒测试等价类划分判定表法因果图法边界值分析法 白盒测试配置测试兼容性测试外国语言测试易用性测试自动化测试和测试工具缺陷轰炸和beta测试 前言 由于本人拖延症严重而且成绩较差,所以才在考试结束将近一个星期后&…

嵌入式硬件篇---基本组合逻辑电路

文章目录 前言基本逻辑门电路1.与门(AND Gate)2.或门(OR Gate)3.非门(NOT Gate)4.与非门(NAND Gate)5.或非门(NOR Gate)6.异或门(XOR Gate&#x…

数据结构漫游记:动态实现栈(stack)

嘿,各位技术潮人!好久不见甚是想念。生活就像一场奇妙冒险,而编程就是那把超酷的万能钥匙。此刻,阳光洒在键盘上,灵感在指尖跳跃,让我们抛开一切束缚,给平淡日子加点料,注入满满的pa…

微信小程序-base64加解密

思路:先创建一个base64.js的文件,这个文件可以作为专门加解密的文件模块,需要时就引用;创建好后,引用base64.js里的加解密函数。 注意:引用模块一定要引用正确的路径,否则会报错。 base64.js:…

RabbitMQ--延迟队列

(一)延迟队列 1.概念 延迟队列是一种特殊的队列,消息被发送后,消费者并不会立刻拿到消息,而是等待一段时间后,消费者才可以从这个队列中拿到消息进行消费 2.应用场景 延迟队列的应用场景很多,…

口令攻击和钓鱼攻击

口令攻击和钓鱼攻击 1、实验说明 口令攻击和钓鱼攻击是生活中两种较为常见的攻击方式, 通过对攻击过程的复现, 能够让学生对其有直观的认识, 进而思考相应的防范措施。 2、实验目的 (1 )能够了解实验规范和实验所需…

考前64天 学习笔记 - 形成“习惯体系”进行最小启动

从2025年1月18日到3月22日还剩64天 一、备考心态 这几天摆烂,并没有怎么学,败在了游戏和短视频上。 每分每秒都在抵御其他诱惑 科学表明:人在做自己不喜欢的事情,意志力最多能挺25分钟 如何稳定自己的心态,答案就在…

【python_钉钉群发图片】

需求: **在钉钉群发图片,需要以图片的形式展示,如图所示:**但是目前影刀里面没有符合条件的指令 解决方法: 1、在钉钉开发者后台新建一个自建应用,发版,然后获取里面的appkey和appsecret&am…

R数据分析:有调节的中介与有中介的调节的整体介绍

单独的有调节的中介或者有中介的调节好多同学还大概能看明白,但是两个东西一起说我发现大部分同学就懵逼了。今天我就尝试将两种方法一起讲讲,重点帮助大家厘清两种方法的异同。 先从整体上看下两者的概念: 有中介的调节首先落脚在调节,调节作用必须是显著的,并且这个调…

DETR论文阅读

1. 动机 传统的目标检测任务需要大量的人工先验知识,例如预定义的先验anchor,NMS后处理策略等。这些人工先验知识引入了很多人为因素,且较难处理。如果能够端到端到直接生成目标检测结果,将会使问题变得很优雅。 2. 主要贡献 提…

天机学堂5-XxlJobRedis

文章目录 梳理前面的实现:Feign点赞改进 day07-积分系统bitmap相关命令签到增加签到记录计算本月已连续签到的天数查询签到记录 积分表设计签到-->发送RabbitMQ消息,保存积分对应的消费者:**消费消息 用于保存积分**增加积分查询个人今日积…

万字长文介绍ARINC 653,以及在综合模块化航空电子设备(IMA)中的作用

文章目录 一、引言二、ARINC 653背景三、整体系统架构四、应用/执行(APEX)接口五、ARINC 653 RTOS内部机制六、健康监测功能七、软件应用八、ARINC 653现状九、总结 一、引言 在现代航空领域,综合模块化航空电子设备(IMA&#xf…

认识 MySQL 和 Redis 的数据一致性问题

参考:https://zhuanlan.zhihu.com/p/429637485 1. 什么是数据的一致性 “数据一致”一般指的是:缓存中有数据,缓存的数据值 数据库中的值。 但根据缓存中是有数据为依据,则”一致“可以包含两种情况: 缓存中有数据…

【论文笔记】SmileSplat:稀疏视角+pose-free+泛化

还是一篇基于dust3r的稀疏视角重建工作,作者联合优化了相机内外参与GS模型,实验结果表明优于noposplat。 abstract 在本文中,提出了一种新颖的可泛化高斯方法 SmileSplat,可以对无约束(未标定相机的)稀疏多…