超全大模型训练流程,教你如何训练自己的大模型

“大模型的核心主要有两部分,一是训练数据,二是机器学习模型。”

现在大模型发展得如火如荼,但是没有学过人工智能技术的开发者,只会调用其接口,但不清楚怎么训练一个大模型。

今天就简单介绍一下自己的理解,有什么问题欢迎讨论。

01 怎么训练一个大模型?

我们知道大模型是指以神经网络为基础构建,通过大量数据学习或者说训练得到的一个模型。

这里大指的是学习的数据量大,而模型是指机器学习模型。通过大量数据训练出来的机器学习模型,就是大模型。

所以,训练一个大模型最重要的两个部分就是训练数据机器学习模型;再加上对训练成果的验证,就构成了一个完善的训练流程。

所以说,训练大模型主要有三步,而每一步下面又有几个步骤:

1. 训练数据

要想弄一份训练数据需要经过几个步骤:

①:数据的收集

②:数据的清洗

③:数据的整理

④:自然语言处理(NLP)

训练大模型需要收集大量的数据,比如语言类,科学类,生活类等;而根据数据的类型分类又有文本,图像,视频等;而不论是文本,图像,还是视频都有多种格式,比如txt,pdf,png,jpg,mp4等。

在这里插入图片描述

数据处理

而根据数据收集的途径,比如来自书籍,网络社区,企业内部数据等;

而收集到的数据并不能直接使用,还需要对数据进行清洗整理等操作,比如一些常识性错误,一些敏感数据等。

而数据的整理就是需要把数据整理成一种或几种固定的格式;

最后进行自然语言处理,因为机器学习模型并不认识人类语言,我们需要把这些收集到的数据,不论是文本,图像还是视频,都需要转换为模型能够认识和存储的格式。

而以上操作只是为了训练大模型做数据准备。

2. 机器学习模型

机器学习模型根据不同的维度可以进行不同的分类,比如有什么监督学习,非监督学习等;然后根据实现算法又分为线性回归,支持向量机等。

机器学习模型根据不同的理论,算法,架构等,具有不同的实现方式,但对训练来说,我们不需要关心模型是怎么开发的,我们只需要知道模型的训练方法即可。

而现在比较火的GPT,就是openAI公司在transformer神经网络架构下开发的一款机器学习模型。

3. 训练成果验证

训练成果验证就是使用一些整理好的数据,输入到大模型中,测试其处理效果是否和预期相同。

一般情况下,都是把整理好的数据,分成训练数据和验证数据;

在模型训练完成之后,再使用验证数据进行结果验证。

而对应到Huggingface这个大模型开源平台,平台把大模型的训练抽象成数据集(datasets),模型(model),自然语言处理(tokenizer),训练(trainer),以及验证评价(evaluate)。

而且为了解决大模型在某些方面的能力不足,还专门设计了大模型的微调方法,以及框架。

大模型的开发,训练,微调,使用等是一个复杂的过程,也是一个需要慢慢学习的过程。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/407813.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法日记day 46(单调栈之下一个更大元素|柱状图中最大图形)

一、下一个更大元素1 题目: nums1 中数字 x 的 下一个更大元素 是指 x 在 nums2 中对应位置 右侧 的 第一个 比 x 大的元素。 给你两个 没有重复元素 的数组 nums1 和 nums2 ,下标从 0 开始计数,其中nums1 是 nums2 的子集。 对于每个 0 …

【C语言】进程和线程详解

目录 C语言进程和线程详解1. 进程和线程的对比2. 进程的基本概念2.1 进程的定义2.2 进程的特点2.3 进程的生命周期 3. 进程管理3.1 进程创建3.2 进程间通信(IPC)3.2.1 管道(Pipe) 4. 线程的基本概念4.1 线程的定义4.2 线程的特点 …

正则表达式匹配成对括号

匹配一对括号,用于在一个html文本中提取JSon 文本。例如 { “duration”:7599,"minBufferTime{second bracket }{third bracket} } 一对加粗的{} ,而不要中间的{}。简单写法会出现错误匹配。 在.Net Framework的正则表达式中,提供了”…

大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式

喜大普奔!破百了! 点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完&a…

Java框架Shiro、漏洞工具利用、复现以及流量特征分析

Shiro流量分析 前言 博客主页: 靶场:Vulfocus 漏洞威胁分析平台 Shiro(Apache Shiro)是一个强大且灵活的开源安全框架,专为Java应用程序提供安全性解决方案。它由Apache基金会开发和维护,广泛应用于企业级…

毛利率承压连亏三年后一季度业绩暴增,百利天恒谋求A+H双上市

《港湾商业观察》施子夫 7月10日,四川百利天恒药业股份有限公司(以下简称,百利天恒)递表港交所主板,联席保荐机构高盛、摩根大通和中信证券。 此次递表港交所系百利天恒第二次谋求上市,若上市成功&#x…

PyTorch升级之旅——安装与基本知识

目录 一、安装 二、张量 创建tensor 张量的操作 广播机制 三、自动求导 四、并行计算 (一)网络结构分布到不同的设备中(Network partitioning) (二)同一层的任务分布到不同数据中(Layer-wise partitioning) (…

GoModule

GOPATH 最早的就是GOPATH构建模式, go get下载的包都在path中的src目录下 src目录是源代码存放目录。 package mainimport ("net/http""github.com/gorilla/mux" )func main() {r : mux.NewRouter()r.HandleFunc("/hello", func(w h…

解决使用matplotlib不显示中文的问题

某季度某城市某天11点到12点气温变化图 import random x range(60) y_BeiJing [random.uniform(15,18) for i in x] plt.figure(figsize(20,8),dpi80) plt.plot(x,y_BeiJing) x_label ["11点{}分".format(i) for i in x] plt.xticks(x[::5],x_label[::5]) plt.yt…

【精选】基于微信小程序的地铁站点查询系统(全网独一无二,阿龙原创设计)

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

C# x Unity面向对象补全计划 设计模式 之 实现一个简单的有限状态机

一个简单的有限状态机可以有如下内容 1.状态基类(定义基本状态的方法,如进入(Enter)、执行(Execute)和退出(Exit),同时可以在此声明需要被管理的对象) 2.具体…

【精选】基于python的影片数据爬取与数据分析

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

软件设计师教程(第5版)第5章 软件工程基础知识(更新中)

5.1 软件工程概述 【软件工程】是指应用计算机科学、数学及管理科学等原理,以工程化的原则和方法来解决软件问题的工程,其目的是提高软件生产率、提高软件质量、降低软件成本。P239 5.1.1 计算机软件 计算机软件是指计算机系统中的【程序】及其【文档】。P240 【…

一文解决---IDEA汉化问题(含中英文切换)

一、英文->中文: ①.下载汉化包插件: 操作顺序:File->Settings->Plugins 在搜索框输入Chinese,然后找到 Chinese (Simplified) Language (汉化插件),等待下载完→Install (安装)&…

OpenCV几何图像变换(9)仿射变换函数warpAffine()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 函数是应用一个仿射变换到图像上。 warpAffine 函数使用指定的矩阵对源图像进行仿射变换: dst ( x , y ) src ( M 11 x M 12 y M…

《机器学习》 决策树剪枝、树模型参数及案例演示

目录 一、决策树剪枝 1、什么是决策树剪枝? 2、如何剪枝 3、剪枝剪哪个位置的叶子结点 二、树模型参数及用法 1、参数种类 2、参数解释 1)criterion:gini or entropy 2)splitter:best or random 3&#xff0…

从心理学的角度,探究一下人类为什么爱玩游戏。(缓解压力、社交需求、 获得成就感)

文章目录 引言I 游戏中的美学和文化元素,是影响玩家心理状态的关键因素。音乐美工文化背景II 成年人对游戏的心理需求获得成就感社交需求缓解压力III 心流理论(Flow Theory)解释玩家虽受虐,但也其乐无穷的现象知识扩展: 心流知识扩展: 心流活动知识扩展:得性乐观(Learne…

新版本 | GreatSQL 8.0.32-26全新发布 增强“四高”诸多新特性

近日,GreatSQL开源数据库社区正式发布 GreatSQL 8.0.32-26新版本,在高可用、高性能、高兼容、高安全等诸多方面进行了特性增强,修复多个缺陷,并详细说明了多个典型应用场景下,升级/降级到GreatSQL 8.0.32-26的操作策略…

Linux自旋锁和读写锁

在前面的文章中我们已经介绍了有关互斥锁的概念与使用,本篇将开始介绍在 Linux 中的自旋锁和读写锁。这三种锁分别用于在不同的应用场景之中,其中互斥锁最为常用,但是我们需要了解一下其他的锁。 对于自旋锁和读写锁都介绍了其原理以及接口使…

游戏如何对抗 IL2cppDumper逆向分析

众所周知,Unity引擎中有两种脚本编译器,分别是 Mono 和 IL2CPP 。相较于Mono,IL2CPP 具备执行效率高、跨平台支持等优势,已被大多数游戏采用。 IL2CPP 模式下,可以将游戏 C# 代码转换为 C 代码,然后编译为…