Python和MATLAB和R对比敏感度函数导图

🎯要点

  1. 深度学习网络两种选择的强制选择对比度检测
  2. 贝叶斯自适应估计对比敏感度函数
  3. 空间观察对比目标
  4. 量化视觉皮质感知差异
  5. 亮度、红/绿值、蓝/黄值色彩空间改变OpenCV图像对比度
  6. 对比敏感度函数模型
  7. 空间对比敏感度估计
  8. 眼球运动医学研究
  9. 空间时间颜色偏心率对比敏感度函数模型

在这里插入图片描述

JavaScript人眼颜色对比差异

  • sRGB:sRGB 是一种三刺激色彩模型,是 Web 的标准,用于大多数计算机显示器。它使用与高清电视标准 Rec709 相同的原色和白点。sRGB 与 Rec709 的区别仅在于传输曲线,通常称为伽马。
  • 伽马:这是用于存储和传输各种图像编码方法的曲线。它通常类似于人类视觉的感知曲线。在数字中,伽马的作用是赋予图像较暗区域更多权重,以便由更多位定义它们,从而避免出现诸如“带状”之类的伪影。
  • 亮度:(记为 L 或 Y):光的线性测量或表示(即无伽马曲线)。测量单位通常是 cd/m2。表示单位是 Y,如 CIEXYZ,通常为 0(黑色)至 100(白色)。亮度具有光谱加权,基于人类对不同波长光的感知。但是,亮度在明暗度方面是线性的 - 也就是说,如果 100 个光子测量值为 10,那么 20 个光子就是 200 个光子。
  • L* (又名 Lstar):感知亮度,由 CIELAB 定义 ( L ∗ a ∗ b ∗ ) \left.L^* a^* b^*\right) Lab) 其中亮度与光量呈线性关系, L ⋆ L ^{\star} L 基于感知,因此在光量方面是非线性的,其曲线旨在匹配人眼的明视觉(伽马约为 ∧ 0.43 { }^{\wedge} 0.43 0.43 )。

亮度 vs L : ∗ 0 L:^* 0 L0 和 100 在光亮(写为 Y Y Y 或 L )和亮度(写为 L ∗ L^* L )方面是相同的,但在中间它们却非常不同。我们确定的中间灰色位于 L ∗ L^* L 的中间 50 处,但这与亮度 (Y) 中的 18.4 相关。在 sRGB 中,这是 #777777 或 46.7 % 46.7 \% 46.7%

对比度:定义两个 L 或两个 Y 值之间差异的术语。对比有多种方法和标准。一种常见的方法是韦伯对比,即 Δ L / L \Delta L / L ΔL/L。对比度通常以比率 (3:1) 或百分比 (70%) 表示。

对于紫色测试示例,我使用十六进制 #9d5fb0(代表 R:157、G:95、B:176),对于绿色测试示例,我使用十六进制 #318261(代表 R:49、G:130、B:97)。

 function HexToRGB(hex) {hex = String(hex);if(hex.length==3){hex='#'+hex.substr(0, 1)+hex.substr(0, 1)+hex.substr(1, 1)+hex.substr(1, 1)+hex.substr(2, 1)+hex.substr(2, 1);}if(hex.length==4){hex='#'+hex.substr(1, 1)+hex.substr(1, 1)+hex.substr(2, 1)+hex.substr(2, 1)+hex.substr(3, 1)+hex.substr(3, 1);}if(hex.length==6){hex='#'+hex;}let R = parseInt(hex.substr(1, 2),16);let G = parseInt(hex.substr(3, 2),16);let B = parseInt(hex.substr(5, 2),16);console.log("rgb from "+hex+" = "+[R,G,B]);   return [R,G,B];}

最常见的灰度程序平均方法是:
灰度 = round ⁡ ( ( R + G + B ) / 3 ) 灰度=\operatorname{round}((R+G+B) / 3) 灰度=round((R+G+B)/3)

  function RGBToGRAY(rgb) {let avg = parseInt((rgb[0]+rgb[1]+rgb[2])/3);return [avg,avg,avg];}

这会将紫色变成 #8f8f8f 因为平均值 = 143,将绿色变成#5c5c5c,因为平均值 = 92。92 和 143 之间的差异太大,会错误地通过我预期的测试。

现在,正如之前所解释的,我们应该使其呈线性并应用 gamma 2.2 校正。
R ′ ∧ 2.2 = R lin ⁡ G ′ ∧ 2.2 = G lin ⁡ B ′ ∧ 2.2 = B lin ⁡ R^{\prime \wedge} 2.2=R \operatorname{lin} G^{\prime \wedge} 2.2=G \operatorname{lin} B^{\prime \wedge} 2.2=B \operatorname{lin} R2.2=RlinG2.2=GlinB2.2=Blin

  function linearFromRGB(rgb) {let R = rgb[0]/255.0; let G = rgb[1]/255.0; let B = rgb[2]/255.0; let gamma = 2.2;R = Math.pow(R, gamma); G = Math.pow(G, gamma); B = Math.pow(B, gamma); let linear = [R,G,B];console.log('linearized rgb = '+linear);  return linear;}

紫色的伽马校正线性结果现在为 R : 0.3440 、 G : 0.1139 、 B : 0.4423 R:0.3440、G:0.1139、B:0.4423 R0.3440G0.1139B0.4423,绿色的结果为 R : 0.0265 、 G : 0.2271 、 B : 0.1192 R:0.0265、G:0.2271、B:0.1192 R0.0265G0.2271B0.1192。现在通过应用系数获得亮度 L 或(XYZ 比例的 Y)如下:
Y = Rlin*  0.2126 + Glin*  0.7152 + Blin*  0.0722 Y=\text { Rlin* } 0.2126 \text { + Glin* } 0.7152+\text { Blin* } 0.0722 Y= Rlin* 0.2126 + Glin* 0.7152+ Blin* 0.0722

   function luminanceFromLin(rgblin) {let Y = (0.2126 * (rgblin[0])); Y = Y + (0.7152 * (rgblin[1])); Y = Y + (0.0722 * (rgblin[2]));console.log('luminance from linear = '+Y);       return Y;}

现在两个 Y(或 L)值之间的感知对比度:
(L较亮 - L较暗) / (L较亮 + 0.1)  \text { (L较亮 - L较暗) / (L较亮 + 0.1) }  (L较亮 - L较暗) / (L较亮 + 0.1) 

 function perceivedContrast(Y1,Y2){let C = ((Math.max(Y1,Y2)-Math.min(Y1,Y2))/(Math.max(Y1,Y2)+0.1));console.log('perceived contrast from '+Y1+','+Y2+' = '+C); return C;      }

现在所有上述功能合并为一步输入/输出

function perceivedContrastFromHex(hex1,hex2){let lin1 = linearFromRGB(HexToRGB(hex1));let lin2 = linearFromRGB(HexToRGB(hex2));let y1 = luminanceFromLin(lin1);let y2 = luminanceFromLin(lin2);return perceivedContrast(y1,y2);}

测试

 var P = perceivedContrastFromHex('#318261','#9d5fb0');alert(P);// shows 0.034369592139888626
  var P = perceivedContrastFromHex('#000','#fff'); alert(P);// shows 0.9090909090909091

完整解析代码

const Color_Parser = {version: '1.0.0.beta',name: 'Color_Parser',result: null, loging: true,parseHex: function(_input) {if (this.loging) {console.log(this.name + ', input: ' + _input);}this.result = {};if (!_input) {this.result.error = true;console.log(this.name + ', error');return this.result;}this.result.hex = String(_input);if (this.result.hex.length == 3) {this.result.hex = '#' + this.result.hex.substr(0, 1) + this.result.hex.substr(0, 1) + this.result.hex.substr(1, 1) + this.result.hex.substr(1, 1) + this.result.hex.substr(2, 1) + this.result.hex.substr(2, 1);}if (this.result.hex.length == 4) {this.result.hex = '#' + this.result.hex.substr(1, 1) + this.result.hex.substr(1, 1) + this.result.hex.substr(2, 1) + this.result.hex.substr(2, 1) + this.result.hex.substr(3, 1) + this.result.hex.substr(3, 1);}if (this.result.hex.length == 6) {this.result.hex = '#' + this.result.hex;}if (this.loging) {console.log(this.name + ', added to result: ' + this.result.hex);}this.result.rgb = {r: null,g: null,b: null};this.result.rgb.r = parseInt(this.result.hex.substr(1, 2), 16);this.result.rgb.g = parseInt(this.result.hex.substr(3, 2), 16);this.result.rgb.b = parseInt(this.result.hex.substr(5, 2), 16);if (this.loging) {console.log(this.name + ', added to result: ' + this.result.rgb);}this.result.int = ((this.result.rgb.r & 0x0ff) << 16) | ((this.result.rgb.g & 0x0ff) << 8) | (this.result.rgb.b & 0x0ff);if (this.loging) {console.log(this.name + ', added to result: ' + this.result.int);}this.result.dec = {r: null,g: null,b: null};this.result.dec.r = this.result.rgb.r / 255.0; this.result.dec.g = this.result.rgb.g / 255.0; this.result.dec.b = this.result.rgb.b / 255.0; if (this.loging) {console.log(this.name + ', added to result: ' + this.result.dec);}this.result.lin = {r: null,g: null,b: null};for (var i = 0, len = 3; i < len; i++) {if (this.result.dec[['r', 'g', 'b'][i]] <= 0.04045) {this.result.lin[['r', 'g', 'b'][i]] = this.result.dec[['r', 'g', 'b'][i]] / 12.92;} else {this.result.lin[['r', 'g', 'b'][i]] = Math.pow(((this.result.dec[['r', 'g', 'b'][i]] + 0.055) / 1.055), 2.4);}}if (this.loging) {console.log(this.name + ', added to result: ' + this.result.lin);}this.result.y = (0.2126 * (this.result.lin.r)); // red channelthis.result.y += (0.7152 * (this.result.lin.g)); // green channelthis.result.y += (0.0722 * (this.result.lin.b)); // blue channelif (this.loging) {console.log(this.name + ', added to result: ' + this.result.y);}this.result.invert = {r: null,g: null,b: null,hex: null};this.result.invert.r = (255 - this.result.rgb.r);this.result.invert.g = (255 - this.result.rgb.g);this.result.invert.b = (255 - this.result.rgb.b);        this.result.invert.hex = this.result.invert.b.toString(16); if (this.result.invert.hex.length < 2) {this.result.invert.hex = '0' + this.result.invert.hex;}this.result.invert.hex = this.result.invert.g.toString(16) + this.result.invert.hex;if (this.result.invert.hex.length < 4) {this.result.invert.hex = '0' + this.result.invert.hex;}this.result.invert.hex = this.result.invert.r.toString(16) + this.result.invert.hex;if (this.result.invert.hex.length < 6) {this.result.invert.hex = '0' + this.result.invert.hex;}this.result.invert.hex = '#' + this.result.invert.hex;this.result.error = false;if (this.loging) {console.log(this.name + ', final output:');}if (this.loging) {console.log(this.result);}return this.result;}
}

👉更新:亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/410387.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql 不同版本安装不同端口

安装版本为Mysql8.0.11 先解压&#xff0c;解压后&#xff0c;包下创建my.ini文件内容如下&#xff1a; 注意&#xff1a;端口不能给别的mysql一样 [mysqld]# 设置3306端口port3307 # 自定义设置mysql的安装目录&#xff0c;即解压mysql压缩包的目录basedirD:\\rj\\mysql8.0.…

模型 SPIN销售法

系列文章 分享 模型&#xff0c;了解更多&#x1f449; 模型_思维模型目录。探需挖痛&#xff0c;引导成交。 1 SPIN销售法的应用 1.1 提升工作效率的软件销售应用SPIN模型 一家制造企业正在寻求提升工作效率的解决方案。他们注意到员工在处理文件和任务时存在效率问题&#…

【Docker】Linux系统以及威联通QNAP部署思源笔记的通用教程

本文首发于 ❄️慕雪的寒舍 本文测试的是旧版本v2.11.4的部署方式&#xff0c;实测当前&#xff08;2024.08.15&#xff09;最新的v3.1.3版本也可以用相同的方式部署。本文的部署方式共写了三种&#xff0c;非qnap的linux系统也可以参考本文部署思源笔记。 阅读本文之前&#…

新审视零阶优化在内存高效大模型微调中的应用

人工智能咨询培训老师叶梓 转载标明出处 随着大模型模型规模的增大&#xff0c;反向传播&#xff08;BP&#xff09;所需的内存开销也日益增加&#xff0c;这对内存效率提出了挑战。尤其是在设备上训练等内存效率至关重要的应用场景中&#xff0c;解决这一问题变得尤为迫切。 …

【Linux】07.Linux 下的项目自动化构建工具——make/makefile

前言 会不会写makefile&#xff0c;从一个侧面说明了一个人是否具备完成大型工程的能力一个工程中的源文件不计数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;makefile定义了一系列的规则来指定&#xff0c;哪些文件需要先编译&#xff0c;哪些文件需要…

【Datawhale X 李宏毅苹果书 AI夏令营】Task1笔记

第三章&#xff1a;深度学习基础 3.1 局部极小值与鞍点 临界点&#xff0c;即梯度为零的点&#xff0c;包含局部极小值&#xff08;local minimum&#xff09;和鞍点&#xff08;saddle point&#xff09;。 梯度下降算法在接近鞍点的时候会变得非常慢&#xff0c;阻碍了继续…

机器学习:K-means算法(内有精彩动图)

目录 前言 一、K-means算法 1.K-means算法概念 2.具体步骤 3.精彩动图 4.算法效果评价 二、代码实现 1.完整代码 2.结果展示 3.步骤解析 1.数据预处理 2.建立并训练模型 3.打印图像 四、算法优缺点 1.优点 2.缺点 总结 前言 机器学习里除了分类算法&#xff0…

如何使用ssm实现计算机科学与技术学习网站的设计与开发

TOC ssm248计算机科学与技术学习网站的设计与开发jsp 绪论 1.1 研究背景 当前社会各行业领域竞争压力非常大&#xff0c;随着当前时代的信息化&#xff0c;科学化发展&#xff0c;让社会各行业领域都争相使用新的信息技术&#xff0c;对行业内的各种相关数据进行科学化&…

尝试给OpenHarmony4.0增加可以在动态库中使用的日志模块

尝试给OpenHarmony4.0增加可以在动态库中使用的日志模块 前言一、资源来源二、实践步骤1.修改OH内核并编译2.动态库增加welog打印3.设备验证打完收工 总结参考 前言 最近在搞OpenHarmony4.0蓝牙模块的适配&#xff0c;最主要的工作就是在libbt_vendor.z.so这个库的编写修改&am…

AWS 使用 Amazon EC2 控制台安装和配置 CloudWatch 代理以添加其他指标如内存

默认情况下&#xff0c;Amazon CloudWatch 提供基本指标&#xff08;例如 CPUUtilization 和 NetworkIn&#xff09;用于监控 Amazon EC2 实例。要收集其他指标&#xff0c;您可以在 EC2 实例上安装 CloudWatch 代理&#xff0c;然后将该代理配置为发出所选指标。您可以使用 Am…

网络安全售前入门04——审计类产品了解

目录 1.前言 2.数据库审计介绍 2.1产品架构功能 2.2应用场景 2.3部署形式 2.4产品价值 2.5选型依据 1.前言 为方便初接触网络安全售前工作的小伙伴了解网安行业情况,我制作一系统售前入门(安全产品,安全服务,法律法规等)文章介绍,希望能给初进网安职场的小伙伴提供…

【Qt】Qt系统 | Qt事件 | 定时器

文章目录 定时器QTimerEventQTimer获取系统日期及时间 定时器 Qt 中在进行窗口程序的处理过程中&#xff0c;经常要周期性的执行某些动作&#xff0c;或者制作一些动画效果&#xff0c;使用定时器可以实现这些需求。 定时器&#xff0c;会在间隔一定时间后&#xff0c;执行某一…

Git下载安装配置

Git的下载与安装 Git是一种分布式版本控制系统&#xff0c;用于跟踪文件和文件夹的变化。它最初由Linus Torvalds开发&#xff0c;用于管理Linux内核的源代码。Git的设计目标是&#xff1a;速度快、开发效率高、数据完整性和可靠性强。 Git通过创建一个存储库&#xff08;rep…

【FESCO福利专区-注册安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 1. 暴力破解密码&#xff0c;造成用户信息泄露 2. 短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉 3. 带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造…

什么领域/方向的产品经理既有发展前景又能做的长久

前几天我在知乎上回答了一道“目前什么领域的产品经理比较有发展前景&#xff1f;有推荐的课程吗&#xff1f;”的问题&#xff0c;讲得还比较实在&#xff0c;于是在这里也顺便分享一下。 TOP1.商业产品经理 之所以这个方向能排在第1&#xff0c;我认为有3点理由。 第1点&a…

国产游戏技术能否引领全球?

国产游戏技术&#xff1a;引领全球还是任重道远&#xff1f; 近年来&#xff0c;伴随着中国科技和经济的迅猛发展&#xff0c;国产游戏行业也呈现出蓬勃发展的态势。从《原神》到《黎明杀机手机版》&#xff0c;多款国产游戏在国际市场上崭露头角。而国产游戏在画面渲染、物理…

基于layui实现简单的万智牌生命计数器页面

对照手机App“旅法师营地”的万智牌生命计数器窗口&#xff08;如下图所示&#xff09;&#xff0c;使用layui、jQuery等实现简单的万智牌生命计数器页面。   主要实现的功能如下&#xff1a;   1&#xff09;点击左右两侧的-1、1、-5、5区域更新左右两侧生命值&#xff1…

短视频SDK解决方案,代码逻辑结构清晰,接入便捷

美摄科技凭借其在多媒体处理领域的深厚积累&#xff0c;推出了高效、易用的短视频SDK解决方案&#xff0c;为开发者及内容创作者提供了一站式的短视频创作与编辑工具&#xff0c;让每一份灵感都能轻松转化为引人入胜的视觉盛宴。 一、技术领先&#xff0c;打造极致体验 美摄科…

DNS详解

DNS详解 DNS 是一个域名系统&#xff0c;它主要用于将人类容易记忆的域名转换成ip地址。 默认情况下&#xff0c;设备会自动从网络供应商获取DNS服务器地址&#xff0c;并使用DNS服务器对域名进行解析。 此外&#xff0c;你也可以手动设置DNS服务器&#xff0c;具体操作系统…

反射机制简单基础

前序 在我们没有学习框架之前我们都是通给new来创建对象&#xff0c;如&#xff1a;创建一个我们已知的对象 Car carnew Car(); 调用类中的成员变量和成员方法都是对象直接调用。 在学习了mybatis框架后&#xff0c;我们了解到可以通过类名&#xff0c;能动态得到类中定义的…