pandas操作Excel文件

pandas操作Excel文件

  • 一、前言
  • 二、指定读取的工作表与header设置
    • 2.1指定工作表
    • 2.2header设置
  • 三、读取Excel数据
    • 3.1iloc读取数据
    • 3.2read_excel读取数据
    • 3.3loc读取数据
  • 四、DataFrame数据筛选
    • 4.1根据列标签对整列进行筛选
    • 4.2使用iloc对区域进行筛选
    • 4.3自定义筛选
  • 五、DataFrame类型与numpy数组相互转换
    • 5.1DataFrame类型转换为numpy数组
    • 5.2numpy数组转换为DataFrame类型
  • 六、写入Excel文件

一、前言

在python语言中,相较于其他操作Excel文件的工具包,pandas提供了高层次的数据操作接口,读取Excel中的数据更方便,且DataFrame数据结构可与numpy数组相互转换,便于后续数据处理与保存。

二、指定读取的工作表与header设置

2.1指定工作表

pandas可以根据工作表的名称或索引指定读取工作表,也可以将工作簿中的工作表全部读取,示例代码如下:

import pandas as pdexcel_data = pd.read_excel('data.xlsx', sheet_name = 'Sheet1')#指定读取名为Sheet1的工作表
excel_data = pd.read_excel('data.xlsx', sheet_name = 1)#指定读取第二个工作表,如只有一个工作表则报错
excel_data = pd.read_excel('data.xlsx', sheet_name = None)#读取所有工作表,返回一个字典,字典中键名为工作表名称,键值为DataFrame格式的工作表内容
excel_data = pd.read_excel('data.xlsx')#不指定读取的工作表时,默认读取第一个工作表

2.2header设置

以读取data.xlsx工作簿的Sheet1工作表为例,表格内容如下图,
在这里插入图片描述

示例代码如下:

import pandas as pdexcel_data = pd.read_excel('data.xlsx')
data = excel_data.iloc[0:3, 0:1]#索引从0开始,读取第一行至第三行、第一列的数据
print(data)#输出如下0.53
0  0.45
1  0.66
2  0.72data = excel_data.iloc[1:3, 0:1]#读取第二行至第三行、第一列的数据
print(data)#输出如下0.53
1  0.66
2  0.72

上述读取Excel指定区域的代码,默认将读取的excel文件中的第一行数据当做了列标签,所以读取的第一行数据其实是Excel中的第二行数据,即0.45而不是0.53。注意0.45前的0为索引,即认为是第一行数据,而0.53前没有索引,将其认为是列的标签。

如果Excel中第一行不是列标签,那么可以通过如下代码设置取消掉header标识

excel_data = pd.read_excel('data.xlsx', header = None)
data = excel_data.iloc[0:3, 0:1]#索引从0开始,读取第一行至第三行、第一列的数据
print(data)#输出如下0
0  0.53
1  0.45
2  0.66data = excel_data.iloc[1:3, 0:1]#读取第二行至第三行、第一列的数据
print(data)#输出如下0
1  0.45
2  0.66

0.53前索引为0,即认为是第一行数据,0.45前索引为1,即认为是第二行数据,与Excel文件中的实际内容相吻合。

三、读取Excel数据

3.1iloc读取数据

使用iloc函数读取Excel指定区域数据的语法几乎与numpy二维数组的读取语法完全相同,如果对numpy数组切片读取很熟悉那么对iloc的用法可以快速掌握。

iloc读取数据时,先指定行,再指定列,索引从0开始,可指定读取一块区域数据,也可指定读取整行或整列数据,示例代码如下:

excel_data = pd.read_excel('data.xlsx', header = None)
data = excel_data.iloc[0:5, 0:4]#读取第一行至第五行、第一列至第四列的数据
print(data)#输出如下0     1     2     3
0  0.53  0.42  0.46  0.63
1  0.45  0.63  0.60  0.56
2  0.66  0.54  0.79  0.61
3  0.72  0.49  0.68  0.43
4  0.73  0.49  0.67  0.66data = excel_data.iloc[0:, 0:4]#读取第一列至第四列整列的数据,行中如有空格则会被读取为NaN值
data = excel_data.iloc[:, 0:4]#与上行代码结果相同
print(data)#输出如下0      1      2      3
0    0.53   0.42   0.46   0.63
1    0.45   0.63   0.60   0.56
2    0.66   0.54   0.79   0.61
3    0.72   0.49   0.68   0.43
4    0.73   0.49   0.67   0.66
5    0.62   0.58   0.80   0.34
6    0.30   0.53   0.44   0.59
7    0.52   0.63   0.56   0.46
8    0.57   0.40   0.52   0.76
9    0.72   0.62   0.33   0.59data = excel_data.iloc[0:5, 0:]#读取第一行至第五行整行的数据,列中如有空格则会被读取为NaN值
data = excel_data.iloc[0:5, ]#与上行代码结果相同
data = excel_data.iloc[0:5]#与上行代码结果相同
print(data)#输出如下0      1      2      3
0    0.53   0.42   0.46   0.63
1    0.45   0.63   0.60   0.56
2    0.66   0.54   0.79   0.61
3    0.72   0.49   0.68   0.43
4    0.73   0.49   0.67   0.66

3.2read_excel读取数据

read_excel是读取Excel文件时调用的函数方法,返回的是包含工作表全部内容的DataFrame结构数据,可以通过设置read_excel的参数读取整行或整列数据,但无法像iloc那样可以灵活读取指定区域的数据,示例代码如下:

data = pd.read_excel('data.xlsx', header = None, skiprows = 2, nrows = 2)#跳过前两行,读取第三行和第四行整行数据
print(data)#输出如下0      1      2      3
0    0.66   0.54   0.79   0.61
1    0.72   0.49   0.68   0.43data = pd.read_excel('data.xlsx', header = None, usecols = [0, 2])#读取第一列和第三列整列数据
data = pd.read_excel('data.xlsx', header = None, usecols = 'A,C')#与上行代码结果相同
print(data)#输出如下0      2
0    0.53   0.46
1    0.45   0.60
2    0.66   0.79
3    0.72   0.68
4    0.73   0.67
5    0.62   0.80
6    0.30   0.44
7    0.52   0.56
8    0.57   0.52
9    0.72   0.33data = pd.read_excel('data.xlsx', header = None, usecols = 'A:C')#读取第一列至第三列整列数据
print(data)#输出如下0      1      2
0    0.53   0.42   0.46
1    0.45   0.63   0.60
2    0.66   0.54   0.79
3    0.72   0.49   0.68
4    0.73   0.49   0.67
5    0.62   0.58   0.80
6    0.30   0.53   0.44
7    0.52   0.63   0.56
8    0.57   0.40   0.52
9    0.72   0.62   0.33

3.3loc读取数据

loc函数是基于行列标签读取数据,如果工作表中存在行列标签,就可以通过指定标签读取数据,但行列标签名必须唯一不能重复,否则会报错,也可以临时增加列标签和行标签(pandas中称为行索引)

读取整列数据示例代码如下:

excel_data = pd.read_excel('data.xlsx')
data = excel_data.loc[:, 0.42]#读取以0.42为列标签的整列数据
data = excel_data[0.42]#与上行代码结果相同
print(data)#输出如下
0      0.63
1      0.54
2      0.49
3      0.49
4      0.58
5      0.53
6      0.63
7      0.40
8      0.62data = excel_data.loc[:, 0.42:0.63]#读取从列标签0.42至0.63的整列数据
print(data)#输出如下0.42   0.46   0.63
0    0.63   0.60   0.56
1    0.54   0.79   0.61
2    0.49   0.68   0.43
3    0.49   0.67   0.66
4    0.58   0.80   0.34
5    0.53   0.44   0.59
6    0.63   0.56   0.46
7    0.40   0.52   0.76
8    0.62   0.33   0.59data = excel_data.loc[:, [0.42, 0.63]]#读取从列标签0.42、0.63的整列数据
print(data)#输出如下0.42   0.63
0    0.63   0.56
1    0.54   0.61
2    0.49   0.43
3    0.49   0.66
4    0.58   0.34
5    0.53   0.59
6    0.63   0.46
7    0.40   0.76
8    0.62   0.59excel_data.columns = ['column01', 'column02', 'column03', 'column04']#临时增加列标签,但会覆盖掉之前已有的列标签
data = excel_data.loc[:, 'column01':'column03']#读取从列标签column01至column3的整列数据
print(data)#输出如下column01  column02  column03
0      0.45      0.63      0.60
1      0.66      0.54      0.79
2      0.72      0.49      0.68
3      0.73      0.49      0.67
4      0.62      0.58      0.80
5      0.30      0.53      0.44
6      0.52      0.63      0.56
7      0.57      0.40      0.52
8      0.72      0.62      0.33

读取整行数据示例代码如下:

excel_data = pd.read_excel('data.xlsx', index_col = 0)#将第一列设置为行标签
data = excel_data.loc[0.45]#读取以0.45为行标签的整行数据
print(data)#输出如下
0.42            0.630
0.46            0.600
0.63            0.560data = excel_data.loc[0.45:0.66]#读取行标签从0.45至0.66的整行数据
print(data)#输出如下0.42  0.46  0.63
0.53
0.45  0.63  0.60  0.56
0.66  0.54  0.79  0.61data = excel_data.loc[0.45, 0.42]#读取行标签为0.45,列标签为0.42的单元格数据
print(data)#输出如下
0.63excel_data.index=['row01', 'row02', 'row03', 'row04', 'row05', 'row06', 'row07', 'row08', 'row09']#临时增加行标签,但会覆盖掉之前已有的行标签
data = excel_data.loc['row01':'row05']#读取行标签从row01至row05的整行数据
print(data)#输出如下0.42  0.46  0.63
row01  0.63  0.60  0.56
row02  0.54  0.79  0.61
row03  0.49  0.68  0.43
row04  0.49  0.67  0.66
row05  0.58  0.80  0.34

注意,行列标签如果为数值形式,那么在索引时直接以数值作索引,如果标签名为字符串,需要对字符串加上单引号或双引号。

四、DataFrame数据筛选

DataFrame数据筛选主要有以下三类:

4.1根据列标签对整列进行筛选

示例代码如下:

excel_data = pd.read_excel('data.xlsx', header = None)
excel_data.columns = ['column01', 'column02', 'column03', 'column04']
data = excel_data[excel_data['column01'] > 0.7]#筛选出column01列大于0.7的整行数据
data = excel_data.query('column01 > 0.7')#与上行代码结果相同
print(data)#输出如下column01  column02  column03  column04
3      0.72      0.49      0.68      0.43
4      0.73      0.49      0.67      0.66
9      0.72      0.62      0.33      0.59data = excel_data[excel_data['column01'].between(0.6, 0.7)]#筛选出column01列0.6与0.7之间的整行数据
data = excel_data.query('column01 >= 0.6 and column01 <= 0.7')#与上行代码结果相同
print(data)#输出如下column01  column02  column03  column04
2      0.66      0.54      0.79      0.61
5      0.62      0.58      0.80      0.34excel_data['column01'][0]='abc'#将column01列的第一行单元格赋值为abc
data = excel_data[excel_data['column01'].str.contains('a', case = False, na = False)]#筛选column01列中包含a的整行数据
print(data)#输出如下column01  column02  column03  column04
0      abc      0.42      0.46      0.63data = excel_data[excel_data['column01'].isin([0.30,0.45, 'abc'])]#筛选column01列中是否包含指定的值
print(data)#输出如下column01  column02  column03  column04
0      abc      0.42      0.46      0.63
1     0.45      0.63      0.60      0.56
6      0.3      0.53      0.44      0.59

4.2使用iloc对区域进行筛选

示例代码如下:

excel_data = pd.read_excel('data.xlsx', header = None)
data = excel_data.iloc[0:5, 0:4]#读取第一行至第五行、第一列至第四列的数据
print(data)#输出如下0     1     2     3
0  0.53  0.42  0.46  0.63
1  0.45  0.63  0.60  0.56
2  0.66  0.54  0.79  0.61
3  0.72  0.49  0.68  0.43
4  0.73  0.49  0.67  0.66data = data[data > 0.7]#筛选出区域内大于0.7的数据
print(data)#输出如下0   1     2   3
0   NaN NaN   NaN NaN
1   NaN NaN   NaN NaN
2   NaN NaN  0.79 NaN
3  0.72 NaN   NaN NaN
4  0.73 NaN   NaN NaNdata = excel_data[excel_data.iloc[:, 0] > 0.7]#筛选出第一列大于0.7的整行数据
print(data)#输出如下0     1     2     3
3  0.72  0.49  0.68  0.43
4  0.73  0.49  0.67  0.66
9  0.72  0.62  0.33  0.59

从上述代码可看出,对区域进行筛选,有可能出现NaN值

4.3自定义筛选

自定义筛选适用于筛选条件较为复杂的情况,通过apply函数实现,示例代码如下:

def filter_1(row):return row[0] > 0.7excel_data = pd.read_excel('data.xlsx', header = None)
data = excel_data[excel_data.apply(filter_1, axis = 1)]#筛选出第一列大于0.7的整行数据
print(data)#输出如下0     1     2     3
3  0.72  0.49  0.68  0.43
4  0.73  0.49  0.67  0.66
9  0.72  0.62  0.33  0.59

apply函数还可用于数据处理操作,示例代码如下:

excel_data = pd.read_excel('data.xlsx', header = None)
print(excel_data)#输出如下0     1     2     3
0  0.53  0.42  0.46  0.63
1  0.45  0.63  0.60  0.56
2  0.66  0.54  0.79  0.61
3  0.72  0.49  0.68  0.43
4  0.73  0.49  0.67  0.66
5  0.62  0.58  0.80  0.34
6  0.30  0.53  0.44  0.59
7  0.52  0.63  0.56  0.46
8  0.57  0.40  0.52  0.76
9  0.72  0.62  0.33  0.59new_data = excel_data.iloc[:, 0].apply(lambda x: x * 2)
print(new_data)#输出如下
0    1.06
1    0.90
2    1.32
3    1.44
4    1.46
5    1.24
6    0.60
7    1.04
8    1.14
9    1.44

五、DataFrame类型与numpy数组相互转换

5.1DataFrame类型转换为numpy数组

pandas读取Excel数据返回的是DataFrame数据结构,将其转换为numpy数组代码如下:

import numpy as npdata = excel_data.iloc[0:3, 0:4]#读取第一行至第三行、第一列至第四列的数据
print(type(data))#输出如下
<class 'pandas.core.frame.DataFrame'>print(data)#输出如下0     1     2     3
0  0.53  0.42  0.46  0.63
1  0.45  0.63  0.60  0.56
2  0.66  0.54  0.79  0.61a01 = np.array(data)#转换为numpy数组
print(a01)#输出如下
[[0.53 0.42 0.46 0.63][0.45 0.63 0.6  0.56][0.66 0.54 0.79 0.61]]data = excel_data.iloc[0:10, 0]#读取第一行至第十行、第一列的数据
print(type(data))#输出如下
<class 'pandas.core.series.Series'>print(data)#输出如下
0    0.53
1    0.45
2    0.66
3    0.72
4    0.73
5    0.62
6    0.30
7    0.52
8    0.57
9    0.72
Name: 0, dtype: float64a01 = np.array(data)#转换为numpy数组
print(a01)#输出如下
[0.53 0.45 0.66 0.72 0.73 0.62 0.3  0.52 0.57 0.72]data = excel_data.iloc[0:10, 0:1]#读取第一行至第十行、第一列的数据
print(type(data))#输出如下
<class 'pandas.core.frame.DataFrame'>print(data)#输出如下0
0  0.53
1  0.45
2  0.66
3  0.72
4  0.73
5  0.62
6  0.30
7  0.52
8  0.57
9  0.72a01 = np.array(data)#转换为numpy数组
print(a01)#输出如下
[[0.53][0.45][0.66][0.72][0.73][0.62][0.3 ][0.52][0.57][0.72]]

通过上述代码可看出,pandas不总是返回DataFrame类型,有时也返回Series类型,这与读取数据时指定单行单列或多行多列有关,而在转换为numpy数组时,DataFrame类型转换成二维数组,Series类型转换成一维数组

另外,如果DataFrame中包含标签,标签并不会被一起转换为numpy数组

5.2numpy数组转换为DataFrame类型

示例代码如下:

np_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
data = pd.DataFrame(np_array)
print(data)#输出如下0  1  2
0  1  2  3
1  4  5  6
2  7  8  9data = pd.DataFrame(np_array, columns=['column01', 'column02', 'column03'])#指定列标签
print(data)#输出如下column01  column02  column03
0         1         2         3
1         4         5         6
2         7         8         9

六、写入Excel文件

pandas是将DataFrame类型数据写入Excel文件中,可以向新文件写入,也可追加工作表写入,示例代码如下:

np_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
data = pd.DataFrame(np_array)
data.to_excel('test01.xlsx', sheet_name = 'data', index = False, header = False)#写入新Excel文件,index控制是否写入行索引,header控制是否写入列标签with pd.ExcelWriter('test01.xlsx', mode = 'a', engine = 'openpyxl') as writer:#追加写入data.to_excel(writer, sheet_name = 'data02', index = False, header = False)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/414743.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

对称密码学

1. 使用OpenSSL 命令行 在 Ubuntu Linux Distribution (发行版&#xff09;中&#xff0c; OpenSSL 通常可用。当然&#xff0c;如果不可用的话&#xff0c;也可以使用下以下命令安装 OpenSSL: $ sudo apt-get install openssl 安装完后可以使用以下命令检查 OpenSSL 版本&am…

SQLi-LABS靶场56-60通过攻略

less-56 1.判断注入点 ?id1 页面不正常 2.判断闭合方式 ?id1) -- 可以闭合成功 3.查看页面回显点 ?id-1)%20 union select 1,2,3-- 4.查询数据库名 ?id-1)%20 union select 1,database(),3-- 5.查询所有表 ?id-1)%20 union select 1,(select table_name from inform…

Spring security的SecurityConfig配置时 userDetailsService报错如何解决?

文章目录 报错信息原因解决方案1. 实现 UserDetailsService 接口修改 IUsersService 接口和实现类 2. 修改 SecurityConfig3. 其他注意事项 报错信息 ‘userDetailsService(T)’ in ‘org.springframework.security.config.annotation.authentication.builders.AuthenticationM…

复习:虚析构函数(√)、纯虚析构函数(√)、虚构造函数(X)

虚析构函数 虚析构函数是为了解决基类的指针指向派生类对象&#xff0c;并用基类的指针删除派生类对 象。 #include <bits/stdc.h> #include <cstdio> #include <cstring> #include <iostream> using namespace std;class Base { public:Base(){cout…

银河麒麟v10-sp3 安装Tomcat10最新版

tomcat官方地址---Apache Tomcat - Apache Tomcat 10 Software Downloads 下载这个即可 Core&#xff1a; 含义&#xff1a;Core代表Tomcat的核心程序&#xff0c;即Tomcat的正式二进制发布版本。这是大多数用户做开发或学习时应该下载的版本。用途&#xff1a;包含了Tomcat服…

mysql的半同步模式

1.半同步模式原理 mysql的主备库通过binlog日志保持一致&#xff0c;主库本地执行完事务&#xff0c;binlog日志落盘后即返回给用户&#xff1b;备库通过拉取主库binlog日志来同步主库的操作。默认情况下&#xff0c;主库与备库并没有严格的同步&#xff0c;因此存在一定的概率…

Python 生成随机的国内 ip

示例代码&#xff1a; import randomdef generate_random_cn_ip():# 中国大陆IP范围start_ip "36.54.0.0"end_ip "123.255.255.254"# 将IP地址转换为整数start_ip_num int(start_ip.replace(".", ""))end_ip_num int(end_ip.rep…

Python日志重复?这里有终极解决方案!

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 文章内容 📒📝 日志重复的常见原因📝 解决重复日志的策略📝 具体示例📝 日志重复问题的其他解决办法⚓️ 相关链接 ⚓️📖 介绍 📖 你是否曾经在调试Python程序时,发现同样的日志信息出现了两次甚至更多?这不仅…

前端框架vue3中的条件渲染(v-show,v-if,v-else-if,v-else)

目录 v-show: 需求&#xff1a; v-if 区别与v-show&#xff1a; v-if和v-show的选择&#xff1a; v-else-if和v-else 联合使用&#xff1a; v-show: 部分代码如图&#xff1a; <body><div id"root"><div ><h1>n的值为{{n}}</h1>…

新学期第一课

文章目录 一、加入课程QQ群&#xff08;一&#xff09;班级QQ群&#xff08;二&#xff09;入群要求 二、加入学习通班级群&#xff08;一&#xff09;学习通班级群&#xff08;二&#xff09;手势签到 三、使用思维导图工具&#xff08;一&#xff09;安装XMind&#xff08;二…

【QT | 开发环境搭建】Linux系统(Ubuntu 18.04) 安装 QT 5.12.12 开发环境

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; ⏰发布时间⏰&#xff1a; 2024-08-29 …

Kotaemon:开源的RAG UI

检索增强生成 (RAG) 已成为一种改变游戏规则的方法&#xff0c;可增强大型语言模型的功能。Kotaemon 是由 Cinnamon 开发的开源项目&#xff0c;它站在这项创新的最前沿&#xff0c;提供了一个简洁、可定制且功能丰富的基于 RAG 的用户界面&#xff0c;用于与文档聊天。 Kotae…

史记——我与历史的缘妙

究天人之际&#xff0c;通古今之变&#xff0c;成一家之言。 注解&#xff1a;这句话出自司马迁《史记》之《报任安书》。意思是通过“史实”现象揭示本质,探究自然现象和人类社会之间的相依相对关系。通晓从古到今的社会的各种发展演变,进而寻找历代王朝兴衰成败之道理。通过…

Mysql剖析(三)----MySql的事务详解

事务&#xff08;Transaction&#xff09;&#xff1a;一般是指要做的或所做的事情。在计算机术语中是指访问并可能更新数据库中的各种数据项的一个程序执行单元&#xff08;unit&#xff09;。事务通常由高级数据库操纵语言或编程语言(如SQL、C或Java)书写的用户程序的执行所引…

设施农业气象站

设施农业气象站的主要作用是为农业生产提供准确的气象数据和预测信息&#xff0c;以帮助农民科学决策和管理农业生产活动。具体作用包括&#xff1a; 提供准确的气象数据&#xff1a;设施农业气象站可以收集并记录气温、湿度、风速、降水量等多种气象信息&#xff0c;并确保数据…

探索存储世界:TF卡与SD卡的奥秘

在这个数字化时代&#xff0c;数据存储变得至关重要。TF卡&#xff08;TransFlash卡&#xff09;和SD卡&#xff08;Secure Digital卡&#xff09;作为两种常见的存储介质&#xff0c;它们在我们的日常生活中扮演着重要角色。MK米客方德将带您深入了解TF卡的基本概念&#xff0…

Python全网最全基础课程笔记-(一)基础入门

本专栏系列为Pythong基础系列&#xff0c;每天都会更新新的内容&#xff0c;搜罗全网资源以及自己在学习和工作过程中的一些总结&#xff0c;可以说是非常详细和全面。 以至于为什么要写的这么详细&#xff1a;自己也是学过Python的&#xff0c;很多新手只是简单的过一篇语法&a…

如何从 AWS CodeCommit 迁移到极狐GitLab?

极狐GitLab 是 GitLab 在中国的发行版&#xff0c;可以私有化部署&#xff0c;对中文的支持非常友好&#xff0c;是专为中国程序员和企业推出的企业级一体化 DevOps 平台&#xff0c;一键就能安装成功。安装详情可以查看官网指南。 本文将分享如何从 AWS CodeCommit 服务无缝迁…

Gartner首次发布AI代码助手魔力象限,阿里云进入挑战者象限,通义灵码产品能力全面领先

8月29日消息&#xff0c;国际市场研究机构Gartner发布业界首个AI代码助手魔力象限&#xff0c;全球共12家企业入围&#xff0c;阿里云成为唯一进入挑战者象限的中国科技公司。通义灵码在产品功能和市场应用等方面表现优秀&#xff0c;获得权威机构认可。 该报告从技术创新性、产…

webpack--处理资源

在webpack.config.js中进行配置 const path require(path) module.exports {// 入口entry: ./src/main.js,// 输出output: {// 文件的输出路径path: path.resolve(__dirname, dist),// 入口文件打包输出的文件名filename: js/main.js,// 自动清空上次打包结果 原理&#xff…