Python检测和识别车牌-python经典练手项目

车牌检测与识别技术用途广泛,可以用于道路系统、无票停车场、车辆门禁等。这项技术结合了计算机视觉和人工智能。

本文将使用Python创建一个车牌检测和识别程序。该程序对输入图像进行处理,检测和识别车牌,最后显示车牌字符,作为输出内容。

创建Python环境

要轻松地完成本教程,您需要熟悉Python基础知识。应先创建程序环境。

在开始编程之前,您需要在环境中安装几个库。打开任何Python IDE,创建一个Python文件。在终端上运行命令以安装相应的库。您应该在计算机上预先安装Python PIP。

  • **OpenCV-Python:**您将使用这个库对输入图像进行预处理,并显示各个输出图像。

    pip install OpenCV-Python

  • **imutils:**您将使用这个库将原始输入图像裁剪成所需的宽度。

    pip install imutils

  • **pytesseract:**您将使用这个库提取车牌字符,并将它们转换成字符串。

    pip install pytesseract

    pytesseract库依赖Tesseract OCR引擎进行字符识别。

如何在您的计算机上

安装Tesseract OCR?

Tesseract OCR是一种可以识别语言字符的引擎。在使用pytesseract库之前,您应该在计算机上安装它。步骤如下:

1. 打开任何基于Chrome的浏览器。

2. 下载Tesseract OCR安装程序。

3. 运行安装程序,像安装其他程序一样安装它。

准备好环境并安装tesseract OCR后,您就可以编写程序了。

导入库

首先导入在环境中安装的库。导入库让您可以在项目中调用和使用它们的函数。

  • import cv2

  • import imutils

  • import pytesseract

您需要以cv2形式导入OpenCV-Python库。使用与安装时相同的名称导入其他库。

获取输入

然后将pytesseract指向安装Tesseract引擎的位置。使用cv2.imread函数将汽车图像作为输入。将图像名称换成您在使用的那个图像的名称。将图像存储在项目所在的同一个文件夹中,以方便操作。

pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files\\Tesseract-OCR\\tesseract.exe'  
original_image = cv2.imread('image3.jpeg')  

左右滑动查看完整代码

您可以将下面的输入图像换成想要使用的图像。

预处理输入

将图像宽度调整为500像素,然后将图像转换成灰度图像,因为canny边缘检测函数只适用于灰度图像。最后,调用bilateralFilter函数以降低图像噪声。

original_image = imutils.resize(original_image, width=500 )  
gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)  
gray_image = cv2.bilateralFilter(gray_image, 11, 17, 17)

左右滑动查看完整代码

在输入端检测车牌

检测车牌是确定汽车上有车牌字符的那部分的过程。

(1)执行边缘检测

先调用cv2.Canny函数,该函数可自动检测预处理图像上的边缘。

edged_image = cv2.Canny(gray_image, 30,200)

我们将通过这些边缘找到轮廓。

(2)寻找轮廓

调用cv2.findContours函数,并传递边缘图像的副本。这个函数将检测轮廓。使用cv2.drawContours函数,绘制原始图像上已检测的轮廓。最后,输出所有可见轮廓已绘制的原始图像。

contours, new = cv2.findContours(edged_image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)  
img1 = original_image.copy()  
cv2.drawContours(img1, contours, -1, (0, 255, 0), 3)  
cv2.imshow("img1", img1)  

左右滑动查看完整代码

该程序绘制它在汽车图像上找到的所有轮廓。

找到轮廓后,您需要对它们进行筛选,以确定最佳候选轮廓。

(3)筛选轮廓

根据最小面积30对轮廓进行筛选。忽略小于这个面积的轮廓,因为它们不太可能是车牌轮廓。复制原始图像,在图像上绘制前30个轮廓。最后,显示图像。

contours = sorted(contours, key = cv2.contourArea, reverse = True)[:30]  
# stores the license plate contour  
screenCnt = None  
img2 = original_image.copy()  # draws top 30 contours  
cv2.drawContours(img2, contours, -1, (0, 255, 0), 3)  
cv2.imshow("img2", img2)

左右滑动查看完整代码

现在轮廓数量比开始时要少。唯一绘制的轮廓是那些近似含有车牌的轮廓。

最后,您需要遍历已筛选的轮廓,确定哪一个是车牌。

(4)遍历前30个轮廓

创建遍历轮廓的for循环。寻找有四个角的轮廓,确定其周长和坐标。存储含有车牌的轮廓的图像。最后,在原始图像上绘制车牌轮廓并加以显示。

count = 0  
idx = 7  for c in contours:  # approximate the license plate contour  contour_perimeter = cv2.arcLength(c, True)  approx = cv2.approxPolyDP(c, 0.018 * contour_perimeter, True)  # Look for contours with 4 corners  if len(approx) == 4:  screenCnt = approx  # find the coordinates of the license plate contour  x, y, w, h = cv2.boundingRect(c)  new_img = original_image [ y: y + h, x: x + w]  # stores the new image  cv2.imwrite('./'+str(idx)+'.png',new_img)  idx += 1  break  # draws the license plate contour on original image  
cv2.drawContours(original_image , [screenCnt], -1, (0, 255, 0), 3)  
cv2.imshow("detected license plate", original_image )

左右滑动查看完整代码

循环之后,程序已识别出含有车牌的那个轮廓。

识别检测到的车牌

识别车牌意味着读取已裁剪车牌图像上的字符。加载之前存储的车牌图像并显示它。然后,调用pytesseract.image_to_string函数,传递已裁剪的车牌图像。这个函数将图像中的字符转换成字符串。

# filename of the cropped license plate image  
cropped_License_Plate = './7.png'  
cv2.imshow("cropped license plate", cv2.imread(cropped_License_Plate))  # converts the license plate characters to string  
text = pytesseract.image_to_string(cropped_License_Plate, lang='eng')

左右滑动查看完整代码

已裁剪的车牌如下所示。上面的字符将是您稍后在屏幕上输出的内容。

检测并识别车牌之后,您就可以显示输出了。

显示输出

这是最后一步。您将提取的文本输出到屏幕上。该文本含有车牌字符。

print("License plate is:", text)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

程序的预期输出应该如下图所示:

车牌文本可以在终端上看到。

源码可以微信扫描下方CSDNA官方认证二维码领取【保证100%免费】

在这里插入图片描述

磨砺您的Python技能

用Python检测和识别车牌是一个有意思的项目。它有挑战性,所以应该会帮助您学到关于Python的更多知识。

说到编程,实际运用是掌握一门语言的关键。为了锻炼技能,您需要开发有意思的项目。

最后这里免费分享给大家一份Python全台学习资料,包含视频、源码、课件

希望能帮到那些不满现状,想提升自己却又没有方向的朋友,也可以和我一起来学习交流呀。
编程资料、学习路线图、源代码、软件安装包等!
① Python所有方向的学习路线图,清楚各个方向要学什么东西
② 100多节Python课程视频,涵盖必备基础、爬虫和数据分析
③ 100多个Python实战案例,学习不再是只会理论
④ 华为出品独家Python漫画教程,手机也能学习
⑤ 历年互联网企业Python面试真题,复习时非常方便
在这里插入图片描述

可以扫描下方CSDNA官方认证二维码领取【保证100%免费】

在这里插入图片描述

原文链接:

https://www.makeuseof.com/python-car-license-plates-detect-and-recognize/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/414935.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OceanBase 的ODP OBproxy 的记录

OceanBase 的ODP的路由说明一、简述为什么使用ODP的原因 (强一致性情况下) 1.分布式数据库在SQL解析这块存在本地执行计划,远程执行计划,分布式执行计划。 本地执行计划:整个SQL的表都在session所在的Observer 节点上。…

数据结构代码集训day14(适合考研、自学、期末和专升本)

题目均来自b站up:白话拆解数据结构! 今日题目如下:(1)试写一个算法判断给定字符序列是否是回文。 (2)给定一个算法判断输入的表达式中括号是否匹配。假设只有花、中、尖三种括号。 题1 回文序列…

教学能力知识

第一章课程理论知识 一、课程理念 二、课程目标 1.核心素养 2.课程总目标 三、教学建议 四、教学环节 第二章教学实施 第一节导入新课类 二.导入方法 第二节教学方法类 教学方法的选择依据 第三节教法实施原则类 设计意图 第四节设计意图类 1.教学目标 2.教学重难点 3.教学…

【Linux】:用户缓冲区

1.前言(引出现象) 我们看一段代码, 我们运行这段代码, 再次运行,并将打印结果重定向到文件log.txt中, 结果除了系统调用write的输出,其余输出都多打印一次。这是为什么呢?我们先…

《花100块做个摸鱼小网站! 》第五篇—通过xxl-job定时获取热搜数据

⭐️基础链接导航⭐️ 服务器 → ☁️ 阿里云活动地址 看样例 → 🐟 摸鱼小网站地址 学代码 → 💻 源码库地址 一、前言 我们已经成功实现了一个完整的热搜组件,从后端到前端,构建了这个小网站的核心功能。接下来,我们…

029、架构_高可用_水位和分组

GoldenDB分组技术 GoldenDB灵活智能的数据可用性策略名称是gTank。包含了分组技术和高低水位两个技术点。在分布式一主多备架构下,全节点的数据同步,耗时长、用户体验差。因此GoldenDB采用分组技术,将数据节点和事务节点GTM实现分组管理,实现业务的灵活配置。 数据节点集群…

基于 OpenCV 的数字图像处理实验平台设计

基于 OpenCV 的数字图像处理实验平台设计 前言简介正文资源链接(含源码) 前言 哈哈上学那会儿做的一个软件,当时把OpenCV各个基础算法都集成在了一起,还有一定程度的顺序执行部分相关算法的功能,那时候网上相关内容比较…

/单元测试

承接上文 统一异常处理&#xff0c;封装结果-CSDN博客 ******************************************** 登录业务 Service public class EmployeeServiceImpl extends ServiceImpl<EmployeeMapper, Employee> implements EmployeeService {Resourceprivate JwtUtils j…

jQuery入门(六)jQuery实现瀑布流分页案例

一、瀑布流分页案例分析 1.1) 功能分析&#xff1a; 鼠标下拉&#xff0c;加载分页数据(10条) &#xff0c;如下图&#xff1a; 案例分析&#xff1a; 1.2) 如何确定当前显示的数据已经浏览完毕&#xff1f; 公式&#xff1a;(滚动条距底部的距离 滚动条上下滚动的距离 当…

Echarts中国地图省市区县三级联动

NodeV14.20.0安装 # 历史版本Node下载地址 https://nodejs.org/en/download/prebuilt-installer# NodeV14.20.0配置与部署 https://nodejs.org/dist/v14.20.0/node-v14.20.0-x64.msi构建默认Vue3工程目录 npm install -g vue/cli --registryhttps://registry.npm.taobao.org …

22. K8S及DevOps

22. K8S及DevOps 一. 章节简介二. DevOps1. 简介2. CICD三. Kubernetes1. [官网](https://kubernetes.io/zh-cn/)2. K8S安装2.1 服务器要求2.2 准备工作演示服务器IP主副服务器设置`hostnamectl`设置host与ip绑定关闭防火墙时间同步关闭selinux安全策略关闭swap分区网桥过滤与地…

SAPUI5基础知识25 - 聚合绑定(Aggregation Binding)

1. 背景 Aggregation Binding 是 SAPUI5 中的一种数据绑定方式&#xff0c;用于将数据模型中的集合&#xff08;如数组&#xff09;绑定到 UI 控件的聚合&#xff08;如列表项、表格行等&#xff09;。 常见的场景包括将一个数组绑定到 sap.m.List 的 items 聚合&#xff0c;…

人脸静态活体检测(高精度版) API 对接说明

人脸静态活体检测&#xff08;高精度版&#xff09; API 对接说明 本文将介绍人脸静态活体检测&#xff08;高精度版&#xff09;API 对接说明&#xff0c;它可用于对用户上传的静态图片进行防翻拍活体检测&#xff0c;以判断是否是翻拍图片。 接下来介绍下 人脸静态活体检测…

yolo8 目标检测、鉴黄

省流 看前必读 别浪费时间 &#xff1a;本文只是一个记录&#xff0c;防止自己下次被改需求时浪费时间&#xff0c;在这里就随意的写了一下文章记录整个步骤&#xff0c;但是文章想必肯定没有对应的教程讲的详细&#xff0c;该文章只适合想要快速按照步骤完成一个简单的 demo 的…

【Next.js 入门指南】5分钟创建你的第一个 Next.js 应用

你是否曾经梦想过构建一个快速、高效且 SEO 友好的 React 应用&#xff1f;今天&#xff0c;我们将一起探索 Next.js —— 一个革命性的 React 框架&#xff0c;它将帮助你轻松实现这个梦想。在接下来的 5 分钟里&#xff0c;你将创建并运行你的第一个 Next.js 应用&#xff0c…

23:【stm32】ADC模数转换器

ADC模数转换器 1、ADC的简介2、逐次逼近型ADC3、采样时间和转换时间4、STM32中ADC模块5、编程案列5.1、AD单通道5.2、AD多通道 1、ADC的简介 ADC就是一个模数转换器&#xff0c;将引脚上连续变化的模拟电压转换为内存中存储的数字变量&#xff0c;建立模拟电路到数字电路的桥梁…

春秋云镜(ZZCMS 2023)·CVE-2023-50104

漏洞参考说明&#xff1a;GitHub - zzq66/cve4 漏洞复现&#xff1a; 1、访问 URL/3/E_bak5.1/upload/index.php 2、使用默认账户密码admin/admin登录 3、上传恶意语句 修改tablename字段为eval($_POST[1]) POST /3/E_bak5.1/upload/phomebak.php HTTP/1.1 Host: eci-2zehp12…

华为云征文 | 华为云Flexus云服务器X实例之Docker环境下部署JmalCloud个人网盘

华为云征文 | 华为云Flexus云服务器X实例之Docker环境下部署JmalCloud个人网盘 前言一、Flexus云服务器X实例介绍1.1 Flexus云服务器X实例简介1.2 Flexus云服务器X实例特点1.3 Flexus云服务器X实例使用场景 二、JmalCloud介绍2.1 JmalCloud简介2.2 JmalCloud优点2.3 JmalCloud使…

阿里云身份证二要素详细使用

初步&#xff1a; 先登录阿里云&#xff08;找官网链接&#xff09; 2、云市场搜索身份证二要素 看个人需求选择 3、我选择的是下边这个 4、接下来看文档具体调用&#xff08;在请求示例中有选择语言的代码 我选择的就是java&#xff09; 5、在控制台看appcode码 放入代码中…

揭秘难以复现Bug的解决之道:堆栈分析实战

目录 引言 友情提示难以复现的Bug之痛 寄存器(SP、LR)详解 SP寄存器&#xff1a;堆栈的指路明灯LR寄存器&#xff1a;函数调用与异常处理的桥梁 问题分析与解决流程揭秘 保存现场分析堆栈数据 堆栈结构入栈顺序 案例 J-Link工具 常用命令保存RAM数据到本地 分析栈基本信息 分…