线代第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录

  • 1.特征值和特征向量
    • 1.1 特征值和特征向量的定义
    • 1.2 特征值和特征向量的求法
    • 1.3 特征值特征向量的主要结论
  • 2.相似
    • 2.1 相似的定义
    • 2.2 相似的性质
    • 2.3 相似的结论
  • 3.相似对角化
  • 4.实对称矩阵
    • 4.1 实对称矩阵的基本性质
    • 4.2 施密特正交化
  • 5.重难点题型总结
    • 5.1 判断矩阵能否相似对角化
    • 5.2 已知两个矩阵相似,求某个矩阵中的未知参数
    • 5.3 相似时,求可逆矩阵P,使得P^-1^AP为对角矩阵
    • 5.4 求正交矩阵Q,使Q^T^AQ=Λ

1.特征值和特征向量

1.1 特征值和特征向量的定义

A为n阶,α是n维非0列向量
Aα=λα,α叫A对应λ的特征向量,叫λ特征值

1.2 特征值和特征向量的求法

⭐️三种求法:

  • 方法一:利用定义Aα=λα
  • 方法二:|λE-A|=0,利用行列式和基础解系
  • 方法三:利用相似,P-1AP=B

方法一:
定义法,定义法常常用于A是抽象形式的矩阵,求解其特征值和特征向量的问题。

方法二:
理论基础:
由定义 A α = λ α , α ≠ 0 ⇒ ( λ E − A ) α = 0 , α ≠ 0 ⇒ α 是 ( λ E − A ) x = 0 的非 0 解 由定义A\alpha = \lambda \alpha ,\alpha \neq 0\\\Rightarrow \left(\lambda E - A\right)\alpha = 0,\alpha \neq 0\\\Rightarrow \alpha 是\left(\lambda E - A\right)x = 0的非0解 由定义Aα=λαα=0(λEA)α=0,α=0α(λEA)x=0的非0

为什么先用行列式计算特征值,特征向量不能是零向量,所以是非零解,齐次线性方程是非零解,所以行列式=0,所以用行列式计算特征值,再用基础解系计算特征向量。

一.常规计算步骤
特征值的计算步骤:
第一步,计算行列式|λE-A|,因为存在非零解,秩必然是不满的,行列式=0,求出特征值。

第二步,通过求出的特征向量,代入回(λE-A)α=0这个齐次线性方程中,计算出特征向量即齐次线性方程的解向量。

二.通过已积累的结论,直接得出特征值
(1)上下三角矩阵,对角矩阵的特征值就是矩阵主对角线上的元素。
[ 1 2 4 0 3 5 0 0 6 ] , 特征值为 λ 1 = 1 , λ 2 = 3 , λ 3 = 6 \left[\begin{matrix} 1 & 2 & 4 \\ 0 & 3 & 5 \\ 0 & 0 & 6 \\ \end{matrix}\right],特征值为\lambda _{1} = 1,\lambda _{2} = 3,\lambda _{3} = 6 100230456 ,特征值为λ1=1λ2=3λ3=6

(2)秩1矩阵,特征值是它的迹,其余都是0
[ a a a a a a a a a ] 特征值为 λ 1 = 3 a , λ 2 = 0 , λ 3 = 0 \left[\begin{matrix} a & a & a \\ a & a & a \\ a & a & a \\ \end{matrix}\right]特征值为\lambda _{1} = 3a,\lambda _{2} = 0,\lambda _{3} = 0 aaaaaaaaa 特征值为λ1=3aλ2=0λ3=0
(3)通过已知矩阵A的特征值和特征向量,直接得到关于A矩阵其他基本变形的特征值和特征向量

在这里插入图片描述
f(A)多项式与A相似

1.3 特征值特征向量的主要结论

  1. 如a1a2是矩阵A关于特征值λ的特征向量,则k1a1+k2a2(非0时)仍是A关于λ的的特征向量。若a1a2是不同特征值的特征向量,则k1a1+k2a2不是A关于λ的的特征向量

∣ A ∣ = Π λ i , 其中 Π 是连乘 Σ λ i = Σ a i i = t r ( A ) , 矩阵的迹是特征值的和 \left|A\right| = \Pi \lambda _{i},其中\Pi 是连乘\\\Sigma \lambda _{i} = \Sigma a_{ii} = t_{r}\left(A\right),矩阵的迹是特征值的和 A=Πλi,其中Π是连乘Σλi=Σaii=tr(A),矩阵的迹是特征值的和

3.不同特征值的特征向量线性无关
4.λi是属于A的k重特征值,属于λi的k重特征向量最多不超过k个。

2.相似

2.1 相似的定义

相似的定义:
A矩阵相似于B,A~B,意味着存在可逆矩阵P使P-1AP=B

注意注意:A相似于B,这句话是有方向性的,规定是P-1AP=B,而B=PAP-1,A相似于B不能颠倒,没有P-1BP=A这种说法

2.2 相似的性质

A~B,则有以下结论
(1)|A|=|B|
(2)r(A)=r(B)
(3)|λE-A|=|λE-B|,即λAB
(4)迹相同,特征值都相同,迹肯定相同
(5)A,B的各阶主子式之和分别相等

关于性质(5)的说明,各阶主子式就是选行和选列的时候,行下标和列下标是一样的,下面给出列子,给出三阶矩阵,求二阶主子式,二阶主子式仅适合用于0多的题
[ 1 2 3 4 5 6 7 8 9 ] ,二阶主子式, [ 1 2 4 5 ] , [ 1 3 4 6 ] , [ 2 3 5 6 ] , [ 4 5 7 8 ] , [ 4 6 7 9 ] , [ 5 6 8 9 ] \left[\begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{matrix}\right],二阶主子式,\left[\begin{matrix} 1 & 2 \\ 4 & 5 \\ \end{matrix}\right],\left[\begin{matrix} 1 & 3 \\ 4 & 6 \\ \end{matrix}\right],\left[\begin{matrix} 2 & 3 \\ 5 & 6 \\ \end{matrix}\right],\left[\begin{matrix} 4 & 5 \\ 7 & 8 \\ \end{matrix}\right],\left[\begin{matrix} 4 & 6 \\ 7 & 9 \\ \end{matrix}\right],\left[\begin{matrix} 5 & 6 \\ 8 & 9 \\ \end{matrix}\right] 147258369 ,二阶主子式,[1425][1436][2536][4758][4769][5869]

2.3 相似的结论

A与B相似的进一步推导结论
在这里插入图片描述
矩阵A与B相似

  • A-1相似于B-1
  • A*相似于B*
  • AT相似于BT
  • 关于分块矩阵
    若 A ~ C , B ~ D , 则 [ A O O B ] ~ [ C O O D ] 若A~C,B~D,则\left[\begin{matrix} A & O \\ O & B \\ \end{matrix}\right]~\left[\begin{matrix} C & O \\ O & D \\ \end{matrix}\right] ACBD,[AOOB][COOD]

3.相似对角化

A为n阶矩阵,存在n阶可逆矩阵P,若P-1AP=Λ,则称A可相似对角化,记做A~Λ,称对角矩阵是A的相似标准型。

关于相似对角化的结论总结:
在这里插入图片描述

注意充要条件和充分条件

4.实对称矩阵

4.1 实对称矩阵的基本性质

关于实对称矩阵,有更良好的性质,直接就满足可以相似对角化,并且还可以用正交矩阵相似对角化

实对称矩阵AT=A
1.实对称矩阵必与对角矩阵相似(可相似对角化)
2.实对称矩阵特征值不同特征向量相互正交
3.实对称矩阵可用正交矩阵相似对角化
Q-1AQ=QTAQ=Λ

因为QQT=E,.Q-1=QT

4.2 施密特正交化

根据 实对称矩阵的基本性质,不同特征值的特征向量相互正交,所以我们应该使用施密特正交化将相同特征值下的特征向量正交化,最后特征向量都要单位化。

施密特正交化公式:
在这里插入图片描述

5.重难点题型总结

5.1 判断矩阵能否相似对角化

例题1:来源 李永乐线代辅导讲义例5.15
在这里插入图片描述

例题2:来源 李永乐线代辅导讲义 例5.18
在这里插入图片描述

5.2 已知两个矩阵相似,求某个矩阵中的未知参数

解题思路:常常利用两个矩阵相似的性质,若相似矩阵之间的迹相等,行列式相等,各阶主子式之和相等

5.3 相似时,求可逆矩阵P,使得P-1AP为对角矩阵

利用相似的传递性

例题1:来源 李永乐线代辅导讲义例5.20
在这里插入图片描述

5.4 求正交矩阵Q,使QTAQ=Λ

例题1:来源 李永乐线代辅导讲义例5.27
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/418398.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++20中支持的非类型模板参数

C20中支持将类类型作为非类型模板参数:作为模板参数传入的对象具有const T类型,其中T是对象的类型,并且具有静态存储持续时间(static storage duration)。 在C20之前,非类型模板参数仅限于:左值引用类型、整数类型、指…

Linux入门攻坚——31、rpc概念及nfs和samba

NFS:Network File System 传统意义上,文件系统在内核中实现 RPC:函数调用(远程主机上的函数),Remote Procedure Call protocol 一部分功能由本地程序完成 另一部分功能由远程主机上的 NFS本质…

C++利用jsoncpp库实现写入和读取json文件(含中文处理)

C利用jsoncpp库实现写入和读取json文件 1 jsoncpp常用类1.1 Json::Value1.2 Json::Reader1.3 Json::Writer 2 json文件3 写json文件3.1 linux存储结果3.2 windows存储结果 3 读json文件4 读json字符串参考文章 在C中使用跨平台的开源库JsonCpp,实现json的序列化和反…

【Qt】Qt与Html网页进行数据交互

前言:此项目使用达梦数据库,以Qt制作服务器,Html制作网页客户端界面,可以通过任意浏览器访问。 1、Qt与网页进行数据交互 1.1、第一步:准备qwebchannel.js文件 直接在qt的安装路径里复制即可 1.2、第二步&#xf…

2025届计算机毕业设计:如何构建Java SpringBoot+Vue个人健康档案管理系统?

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

node.js实现阿里云短信发送

效果图 实现 一、准备工作 1、官网直达网址: 阿里云 - 短信服务 2、按照首页提示依次完成相应资质认证和短信模板审核; 3、获取你的accessKeySecret和accessKeyId; 方法如下: 获取AccessKey-阿里云帮助中心 4、获取SignNa…

做运营,发布时间很重要

声明:此篇为 ai123.cn 原创文章,转载请标明出处链接:https://ai123.cn/#1 作为社交网络与媒体行业的内容运营,我常常被以下问题困扰:用户活跃时间难以预测、内容策划时间紧张、跨平台管理复杂、数据分析繁琐、创意枯竭…

2024整理 iptables防火墙学习笔记大全_modepro iptables

Iptables名词和术语 2iptables表(tables)和链(chains) 2表及其链的功能 2  Filter表 2  NAT表 2  MANGLE表 2iptables的工作流程 3iptables表和链的工作流程图 3 二、 iptables实战应用 4iptables命令参数详解 4  iptable…

【视频讲解】Python贝叶斯卷积神经网络分类胸部X光图像数据集实例

全文链接:https://tecdat.cn/?p37604 分析师:Yuanchun Niu 在人工智能的诸多领域中,分类技术扮演着核心角色,其应用广泛而深远。无论是在金融风险评估、医疗诊断、安全监控还是日常的交互式服务中,有效的分类算法都是…

解锁Web3.0——Scaffold-eth打造以太坊DApp的终极指南

🚀本系列文章为个人学习笔记,目的是巩固知识并记录我的学习过程及理解。文笔和排版可能拙劣,望见谅。 目录 前言 一、快速部署 1、前期准备: 2、安装项目: ​ 二、配置部署运行环境 1、初始化本地链:…

VisualStudio环境搭建C++

Visual Studio环境搭建 说明 C程序编写中,经常需要链接头文件(.h/.hpp)和源文件(.c/.cpp)。这样的好处是:控制主文件的篇幅,让代码架构更加清晰。一般来说头文件里放的是类的申明,函数的申明,全局变量的定义等等。源…

【最新华为OD机试E卷-支持在线评测】机器人活动区域(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)

🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-E/D卷的三语言AC题解 💻 ACM金牌🏅️团队| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍿 最新华为OD机试D卷目录,全、新、准,题目覆盖率达 95% 以上,…

移动UI:分类列表页、筛选页的设计揭秘。

移动UI的列表页设计需要考虑用户体验和界面美观性,以下是一些建议的设计要点: 1. 列表项的展示: 列表页应该清晰地展示各个列表项,包括标题、副标题、缩略图等内容,以便用户快速浏览和识别。可以使用卡片式布局或者简…

UnLua环境搭建

一、环境搭建 1、下载UnLua工程:https://github.com/Tencent/UnLua 2、复制Plugins/UnLua目录下的插件到自己的项目中 3、重新生成自己的VS工程 4、打开VS工程的项目名.Build.cs文件,引用UnLua插件,重新编译工程 PublicDependencyModuleNames.AddRan…

金税四期工程运维:税务领域的信息化挑战与策略

在信息化浪潮的推动下,中国税务系统迎来了“金税四期”工程这一重大变革。作为税务信息化的新阶段,金税四期不仅标志着税务管理向更高效、更智能的方向迈进,同时也对运维工作提出了前所未有的挑战。本文将从金税四期的背景、运维需求分析、面…

Redis进阶(六):缓存

1.缓存 速度快的设备可以作为速度慢的设备的缓存 缓存能够有意义:二八定律,20%的数据可以应对80%的请求 通常使用redis作为数据库的缓存(mysql) 数据库是非常重要的组件,mysql速度比较慢 因为mysql等数据库&#x…

CSP-J基础之进制转换

文章目录 前言数制1. **二进制 (Binary)**2. **八进制 (Octal)**3. **十进制 (Decimal)**4. **十六进制 (Hexadecimal)** K进制转十进制例子 1:以二进制(K 2)为基数例子 2:以八进制(K 8)为基数例子 3&…

scRNA-data中的R值

愿武艺晴小朋友一定得每天都开心 当我们测序拿得到各个样本中基因的表达值&#xff0c;就可以用基因表达值来表征样本间的相关性 代码如下&#xff1a; #样本间相似性&#xff1a;R值 相关性 捕获到的基因在两个样本间表达趋势一致性 exp_RNA <- AverageExpression(fasti…

雷电9模拟器安装magisk和lsposed

模拟器环境配置 1、开启root 2、开启System.vmdk可写入 安装magisk 1、新建模拟器、开启root权限、并安装debug版magisk 下载地址去上面吾爱论坛作者文章下载吧&#xff01;支持他一下&#xff01; 2、打开magisk的app&#xff0c;点击安装 如果弹出获取权限&#xff0c;直接…

JUC面试知识点手册

第一章&#xff1a;Java并发简介 1.1 什么是并发编程 并发编程是指在同一时间段内执行多个任务的编程方式。在单核处理器上&#xff0c;并发通过时间分片来实现&#xff0c;即在同一时间只有一个任务在执行&#xff0c;其他任务被暂停等待。在多核处理器上&#xff0c;并发可…