算法复杂度 —— 数据结构前言、算法效率、时间复杂度、空间复杂度、常见复杂度对比、复杂度算法题(旋转数组)

目录

一、数据结构前言

1、数据结构

2、算法

3、学习方法

二、 算法效率

引入概念:算法复杂度 

三、时间复杂度

1、大O的渐进表示法

2、时间复杂度计算示例 

四、空间复杂度

计算示例:空间复杂度

五、常见复杂度对比

六、复杂度算法题(旋转数组)

1、思路1

2、思路2

3、思路3


一、数据结构前言

1、数据结构

        数据结构(Data Structure)是计算机存储、组织数据的方式指相互之间存在⼀种或多种特定关系的数据元素的集合。没有⼀种单⼀的数据结构对所有用途都有⽤,所以要学各式各样的数据结构,如:线性表、树、图、哈希等。

2、算法

        算法(Algorithm):就是定义良好的计算过程,取⼀个或⼀组的值为输⼊,并产⽣出⼀个或⼀组值作为输出。简单来说算法就是⼀系列的计算步骤,⽤来将输⼊数据转化成输出结果

3、学习方法

第一、多找题刷题,如刷题网站:牛客网、LeetCode等;第二、死磕代码;第三、画图+思考

二、 算法效率

如何衡量⼀个算法的好坏,下面来思考一道算法题:
案例:旋转数组https://leetcode.cn/problems/rotate-array/description/
思路:循环K次将数组所有元素向后移动⼀位

void rotate(int* nums, int numsSize, int k) 
{while(k--){int end = nums[numsSize-1];//保存数组中最后一个数据for(int i = numsSize - 1;i > 0 ;i--){nums[i] = nums[i-1];//数组中所有数据整体右移一位}nums[0] = end;//数组中最后一个数据挪到第一位}
}

 

代码点击执行可以通过,然而点击提交却无法通过,这就是衡量算法好坏,涉及到算法复杂度。

引入概念:算法复杂度 

  1. 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源
  2. 因此衡量⼀个算法的好坏,⼀般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度
  3. 时间复杂度主要衡量⼀个算法的运行快慢,而空间复杂度主要衡量⼀个算法运行所需要的额外空间。
  4. 在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注⼀个算法的空间复杂度,重点在于时间复杂度

三、时间复杂度

定义: 在计算机科学中,算法的时间复杂度是⼀个函数式T(N),它定量描述了该算法的运行时间。时间复杂度是衡量程序的时间效率 ,那么为什么不去计算程序的运行时间呢?
  1. 因为程序运⾏时间和编译环境和运行机器的配置都有关系,比如同⼀个算法程序,用⼀个老编译器进行编译和新编译器编译,在同样机器下运行时间不同(无法算出精确的运行时间)
  2. 同⼀个算法程序,用⼀个老低配置机器和新高配置机器,运行时间也不同。
  3. 并且时间只能程序写好后测试,不能写程序前通过理论思想计算评估。

以下的典型代码能够很好的体现这一点: 

#include <stdio.h>
#include <time.h>int main()
{//计算程序运行时间int begin = clock();//clock()函数用来保存运行的时间int count = 0;for(int i = 0;i < 100000000;i++){count++;}int end = clock();printd("time:%d\n",end - begin);return 0;
}

        VS中有两个版本,版本的不同会影响程序运行的时间在VS中的Debug版本中,运行时是需要加上调试信息的时间的,时间会长一点;而在Release版本中,不会增加调试信息的时间,运行效率是很高的。

VS中的Debug版本:

 VS中的Release版本:

  1. 算法的时间复杂度是⼀个函数式T(N),它计算了程序的执行次数。
  2. 通过c语言编译链接章节学习,算法程序被编译后生成二进制指令,程序运行,就是CPU执行这些编译好的指令。
  3. 通过程序代码或者理论思想计算出程序的执⾏次数的函数式T(N),假设每句指令执行时间基本⼀样(实际中有差别,但是微乎其微),那么执行次数和运行时间就是等比正相关,这样也脱离了具体的编译运行环境。执行次数就可以代表程序时间效率的优劣。
  4. 比如解决⼀个问题的算法a程序T(N) = N,算法b程序T(N) = N^2,那么算法a的效率⼀定优于算法b。一次定义的变量也算一个时间复杂度,为1,可忽略不计。
重点:
        程序时间效率 = 每条语句运行时间(取决于编译环境和运行环境(不确定的变量)) × 运行次数(确定的变量)
既然如此,可把不确定的变量去掉,留下确定的变量,即只可看运行次数来确定程序时间效率。
案例:
// 请计算⼀下Func1中++count语句总共执⾏了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}//N^2for (int k = 0; k < 2 * N ; ++ k){++count;}//2Nint M = 10;while (M--)//10{++count;}
}

  1. 实际中计算时间复杂度时,计算的也不是程序的精确的执行次数,精确执行次数计算起来还是很麻烦的(不同的⼀句程序代码,编译出的指令条数都是不⼀样的),计算出精确的执行次数意义也不大
  2. 因为计算时间复杂度只是想比较算法程序的增长量级,也就是当N不断变大时T(N)的差别,上面我们已经看到了当N不断变大时常数和低阶项对结果的影响很小。
  3. 所以只需要计算程序能代表增长量级的大概执行次数,复杂度的表示通常使用大O的渐进表示法。

1、大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

注意:推导大O阶规则
  1. 时间复杂度函数式T(N)中,只保留最高阶项,去掉那些低阶项,这里的高阶项和低阶项是相对来说的,因为当N不断变大时, 高阶项对结果的影响越来越大,低阶项对结果影响越来越小,当N无穷大时,就可以忽略不计了。
  2. 如果最高阶项存在且不是1,则去除这个项目的常数系数,因为当N不断变大,这个系数对结果影响越来越小,当N无穷大时,就可以忽略不计了。
  3. T(N)中如果没有N相关的项目,只有常数项(无论多大),用常数1取代所有加法常数。

        我们所讲的非常大的数字,一般在数学中取的是极限。 

通过以上⽅法,可以得到 Func1 的时间复杂度为: O(N^2 )

2、时间复杂度计算示例 

示例一:
// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k)//2N{++count;}int M = 10;while (M--)//10{++count;}printf("%d\n", count);
}
Func2执行的基本操作次数: T (N) = 2N + 10
根据推导规则第二条得出Func2的时间复杂度为: O(N)
示例二:
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k)//M 变量{++count;}for (int k = 0; k < N ; ++k)//N 变量{++count;}printf("%d\n", count);
}
Func3执行的基本操作次数: T (N) = M + N
因此:Func2的时间复杂度为: O(N)
扩展思考:
        若M>>N,则为O(M);若M<<N,则为O(N);若M==N(相差无几),则为O(M+N)
其他情况也可用这种思想去思考取影响最大的那部分作为时间复杂度
实例三:
// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k)//常数则为1{++count;}printf("%d\n", count);
}
Func4执行的基本操作次数:T (N) = 100
根据推导规则第1条得出 Func2的时间复杂度为: O(1)
重点:O(1)的1不是指运行一次,而是代表常数,是一种表示的方法
实例四:
// 计算strchr的时间复杂度?
const char * strchr ( const char* str, int character)
{const char* p_begin = s;while (*p_begin != character){if (*p_begin == '\0')return NULL;p_begin++;}return p_begin;
}
strchr执行的基本操作次数:
  1. 若要查找的字符在字符串第⼀个位置,则: T (N) = 1
  2. 若要查找的字符在字符串最后的⼀个位置, 则: T (N) = N
  3. 若要查找的字符在字符串中间位置,则: T (N) = 2N

因此:strchr的时间复杂度分为: 最好情况: O(1) ;最坏情况: O(N) ;平均情况: O(N)

总结:
有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
大O的渐进表示法在实际中⼀般情况关注的是算法的上界,也就是最坏运行情况。

实例五:

冒泡排序的外层循环(控制次数)控制内层循环多少次(执行次数),只需算内层循环即可。

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end)//外层{int exchange = 0;for (size_t i = 1; i < end; ++i)//内层{if (a[i-1] > a[i]){    //排升序Swap(&a[i-1], &a[i]);exchange = 1;//判断数组是否有序}}if (exchange == 0)break;}
}

 BubbleSort执行的基本操作次数:

  1. 若数组有序,则: T (N) = N
  2. 若数组有序且为升序,则: T (N) = (N ∗ (N + 1))/2
  3. 若要查找的字符在字符串中间位置,则因此BubbleSort的时间复杂度取最差情况为: O(N^2 )

        综上同理可得,Func1的外层循环(控制次数)也是控制内层循环多少次(执行次数),只需算内层循环即可,即得内层相加的结果为N*N。

实例六:

void func5(int n)
{int cnt = 1;while (cnt < n){cnt *= 2;}
}
        当n=2时,执⾏次数为1;当n=4时,执⾏次数为2;当n=16时,执⾏次数为4。 假设执⾏次数为 x ,则 2^x = n ;因此执⾏次数: x = log n
因此:func5的时间复杂度取最差情况为:O()

注意: 课件中和书籍中 、 log n 、 lg n 的表示:
  1. 当n接近⽆穷⼤时,底数的大小对结果影响不大。
  2. 因此,⼀般情况下不管底数是多少都可以省略不写,即可以表⽰为 log n 。
  3. 不同书籍的表示方式不同,以上写法差别不大,我们建议使用 log n。
  4. 上几种写法都是正确的,对于计算机而言,这里的底数大小可以忽略不计,即可去掉。其次,键盘或代码中是无法输入底数的。用数学层面来说就是换底公式的运用使底数对结果的影响不大。
实例七:
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}
        调用⼀次Fac函数开辟的函数栈帧的时间复杂度为 O(1) ;而在Fac函数中,存在N次递归调用Fac函数 ;因此阶乘递归的时间复杂度为: O(N)

四、空间复杂度

  1. 空间复杂度也是⼀个数学表达式,是对⼀个算法在运行过程中因为算法的需要额外临时开辟的空间
  2. 空间复杂度不是程序占用了多少bytes的空间,因为常规情况每个对象大小差异不会很大,所以空间复杂度算的是变量的个数。
  3. 空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:
        函数运行时所需要的栈空间(存储参数、局部变量、⼀些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

计算示例:空间复杂度

实例一:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);//assert断言不需要申请空间for (size_t end = n; end > 0; --end)//1{int exchange = 0;//1for (size_t i = 1; i < end; ++i)//1{if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}
函数栈帧在编译期间已经确定好了, 只需要关注函数在运行时额外申请的空间。
BubbleSort额外申请的空间有exchange等有限个局部变量,使用了常数个额外空间。
因此空间复杂度为 O(1)
实例二:
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}
Fac递归调用了N次,额外开辟了N个函数栈帧, 每个栈帧使用了常数个空间。
因此空间复杂度为: O(N)
后面我们将会学到的通过动态申请内容也会涉及到空间复杂度的计算,相关代码如下:
int func(int n)
{int arr[n] = malloc(sizeof(int)*n);//空间复杂度也为O(N)
}

五、常见复杂度对比

六、复杂度算法题(旋转数组)

题目链接: https://leetcode.cn/problems/rotate-array/description/

1、思路1

  1. 时间复杂度 O(N^2 )
  2. 循环K次将数组所有元素向后移动⼀位(代码不通过)
    void rotate(int* nums, int numsSize, int k) 
    {while(k--){int end = nums[numsSize-1];for(int i = numsSize - 1;i > 0 ;i--){nums[i] = nums[i-1];}nums[0] = end;}
    }

根据第五大点的时间复杂度 O(N^2 )图表,运行时会超出时间限制:

2、思路2

  1. 空间复杂度 O(N);时间复杂度O(N)
  2. 申请新数组空间,先将后k个数据放到新数组中,再将剩下的数据挪到新数组中
    void rotate(int* nums, int numsSize, int k)
    {int newArr[numsSize];for (int i = 0; i < numsSize; ++i)//N{newArr[(i + k) % numsSize] = nums[i];}for (int i = 0; i < numsSize; ++i)//N{nums[i] = newArr[i];}
    }

 交换前:

 交换后:

时间复杂度少的原因:

3、思路3

  1. 空间复杂度 O(1);时间复杂度O(N)
  2. 前n-k个逆置: 4 3 2 1 5 6 7
  3. 后k个逆置 :4 3 2 1 7 6 5
  4. 整体逆置 : 5 6 7 1 2 3 4
    void reverse(int* nums,int left,int right)
    {while(left < right){//left和right指向的数据要进行交换int tmp = nums[left];nums[left] = nums[rightend];nums[right] = tmp;left++;right--;}
    }void rotate(int* nums, int numsSize, int k)
    {k = k%numsSize;reverse(nums,0,numsSize-k-1);//传的是数组的下标//前n-k个逆置reverse(nums,numsSize-k,numsSize-1);//后k个逆置reverse(nums,0,numsSize-1);//整体逆置
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/419071.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《JavaEE进阶》----12.<SpringIOCDI【扫描路径+DI详解+经典面试题+总结】>

本篇博客主要讲解 扫描路径 DI详解&#xff1a;三种注入方式及优缺点 经典面试题 总结 五、环境扫描路径 虽然我们没有告诉Spring扫描路径是什么&#xff0c;但是有一些注解已经告诉Spring扫描路径是什么了 如启动类注解SpringBootApplication。 里面有一个注解是componentS…

【学习笔记】3GPP WG SA5 Rel-19标准化工作管理和编排

3GPP WG SA5 Rel-19标准化工作涵盖了管理和编排要求、管理阶段2和管理流程&#xff0c;以及阶段3 OpenAPI和YANG解决方案集&#xff0c;以在多供应商环境中为5G网络提供完整的管理互操作性能力。 SA5以WG SA1通过紧密跟踪其他3GPP工作组的进展&#xff0c;这些工作组产生新的网…

如何使div居中?CSS居中终极指南

前言 长期以来&#xff0c;如何在父元素中居中对齐一个元素&#xff0c;一直是一个让人头疼的问题&#xff0c;随着 CSS 的发展&#xff0c;越来越多的工具可以用来解决这个难题&#xff0c;五花八门的招式一大堆&#xff0c;这篇博客&#xff0c;旨在帮助你理解不同的居中方法…

【机器人工具箱Robotics Toolbox开发笔记(二)】Matlab中机器人工具箱的下载与安装

Matlab机器人工具箱(Robotics Toolbox)可从Peter Corke教授提供的网站上免费下载。网址为:http://www.petercorke.com/Robotics_Toolbox.html。 图1 网站所提供的机器人工具箱版本 在Downloading the Toolbox栏目中单击here按钮进入下载页面,然后在该页面中填写国家、组织…

Qt多语种开发教程

Qt作为跨平台的开发工具&#xff0c;早已应用到各行各业的软件开发中。 今天讲讲&#xff0c;Qt开发的正序怎么做多语言开发。就是说&#xff0c;你设置中文&#xff0c;就中文显示&#xff1b;设置英语就英文显示&#xff0c;设置繁体就繁体显示&#xff0c;设置发育就显示法语…

京东物流查询|开发者调用API接口实现

快递聚合查询的优势 1、高效整合多种快递信息。2、实时动态更新。3、自动化管理流程。 聚合国内外1500家快递公司的物流信息查询服务&#xff0c;使用API接口查询京东物流的便捷步骤&#xff0c;首先选择专业的数据平台的快递API接口&#xff1a;物流快递查询API接口-单号查询…

【C语言】详解结构体(下)(位段)

文章目录 前言1. 位段的含义2. 位段的声明3. 位段的内存分配&#xff08;重点&#xff09;3.1 存储方向的问题3.2 剩余空间利用的问题 4. 位段的跨平台问题5. 位段的应用6. 总结 前言 相信大部分的读者在学校或者在自学时结构体的知识时&#xff0c;可能很少会听到甚至就根本没…

win10不用anaconda安装tensorflow-cpu并导入pycharm

记录一下防止忘了 一、前提&#xff1a;已经安装了python3.6.4,想用tensorflow的包 二、在pycharm中File-Settings-Project Interpreter点“”号导入很慢&#xff0c;所以直接在cmd中使用 pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow-cpu下载好&#x…

2024AI绘画工具排行榜:探索最受欢迎的AI绘图软件特点与选择指南

AI绘画工具各有优势&#xff0c;从开放性到对特定语言和文化的支持&#xff0c;以及对图像细节和艺术性的不同关注点&#xff0c;根据具体需求选择合适的工具 MidJourney 图片品质卓越&#xff0c;充满独特创意&#xff0c;初期能够免费获取数十账高质量图片&#xff0c;整个生…

(一)十分简易快速 自己训练样本 opencv级联haar分类器 车牌识别

🍂1、不说废话,现象展示 🍃图片识别 🍃视频识别 自己训练样本 十分简易快速 opencv级联ha

前端:Vue3学习-2

前端:Vue3学习-2 1. vue3 新特性-defineOptions2. vue3 新特性-defineModel3. vue3 Pinia-状态管理工具4. Pinia 持久化插件 -> pinia-plugin-persistedstate 1. vue3 新特性-defineOptions 如果要定义组件的name或其他自定义的属性&#xff0c;还是得回归原始得方法----再…

页面要突破手机安全区域来全屏显示(沉浸式模式显示),其他页面不需要,如何设置安全区域文字颜色

#效果图 ##思路遇到的问题 在aboutToAppear中使用window模块的 getLastWindow 和 setWindowLayoutFullScreen两个方法来处理全屏显示 设置沉浸式模式的特点&#xff1a; 在任何一个页面中设置过一次之后&#xff0c;其他页面也会跟着全屏显示 这么处理会出现问题&#xff1a…

实验七 期中练习

实验目的及要求 目的&#xff1a;掌握File类的作用和使用方法&#xff0c;掌握运用文件字节输入输出流对文件进行操作&#xff0c;综合运用学过的知识。 要求&#xff1a; &#xff08;1&#xff09;编写FileDemo类测试File类的常用方法 &#xff08;2&#xff09;用FileOu…

2024国赛数学建模-模拟火算法(MATLAB 实现)

模拟退火算法 1.1 算法原理 模拟退火算法的基本思想是从一给定解开始 ,从邻域 中随机产生另一个解 ,接受 Metropolis准则允许目标函数在 有限范围内变坏 ,它由一控制参数 t决定 ,其作用类似于物 理过程中的温度 T,对于控制参数的每一取值 ,算法持续进 行“产生 —判断 —接受…

ElasticSearch的DSL查询⑤(ES数据聚合、DSL语法数据聚合、RestClient数据聚合)

目录 一、数据聚合 1.1 DSL实现聚合 1.1.1 Bucket聚合 1.1.2 带条件聚合 1.1.3 Metric聚合 1.1.4 总结 2.1 RestClient实现聚合 2.1.1 Bucket聚合 2.1.2 带条件聚合 2.2.3 Metric聚合 一、数据聚合 聚合&#xff08;aggregations&#xff09;可以让我们极其方便的实…

oracle数据块内部结构详解

文章目录 Oracle数据块详解概述Oracle块具有以下特点&#xff1a;① 最小的I/O单元&#xff1b;② 包含一个或多个OS块&#xff1b;③ 大小由参数DB_BLOCK_SIZE决定&#xff1b;④ 数据库创建时设置&#xff0c;数据库创建后不能更改 Oracle数据块详解 概述 操作系统块是…

音频-语言大模型原理

重磅推荐专栏: 《大模型AIGC》 《课程大纲》 《知识星球》 本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经…

Flutter中自定义气泡框效果的实现

在用户界面的设计中&#xff0c;气泡框&#xff08;Bubble&#xff09;是一种非常有效的视觉工具&#xff0c;它可以用来突出显示信息或提示用户。气泡框广泛应用于聊天应用、通知提示等场景。在 Flutter 中&#xff0c;虽然有很多现成的气泡框组件&#xff0c;但如果你想要更多…

c# checkbox的text文字放到右边

checkbox的text文字放到右边 实现方法如下图 特此记录 anlog 2024年9月2日

[数据集][目标检测]石油泄漏检测数据集VOC+YOLO格式6633张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;6633 标注数量(xml文件个数)&#xff1a;6633 标注数量(txt文件个数)&#xff1a;6633 标注…