2024国赛数学建模-模拟火算法(MATLAB 实现)

  1. 模拟退火算法

1.1 算法原理 模拟退火算法的基本思想是从一给定解开始 ,从邻域 中随机产生另一个解 ,接受 Metropolis准则允许目标函数在 有限范围内变坏 ,它由一控制参数 t决定 ,其作用类似于物 理过程中的温度 T,对于控制参数的每一取值 ,算法持续进 行“产生 —判断 —接受或舍去 ”的迭代过程 ,对应着固体在 某一恒定温度下的趋于热平衡的过程 ,当控制参数逐渐减 小并趋于 0时 ,系统越来越趋于平衡态 ,最后系统状态对应于优化问题的全局最优解 ,该过程也称为冷却过程 ,由于固 体退火必须缓慢降温 ,才能使固体在每一温度下都达到热 平衡 ,最终趋于平衡状态 ,因此控制参数 t经缓慢衰减 ,才 能确保模拟退火算法最终优化问题的整体最优解。

  1. 2 算法具体步骤

(1)给定模型每一个参数变化范围 ,在这个范围内随 机选择一个初始模型 m0 ,并计算相应的目标函数值 E (m0 )。

(2)对当前模型进行扰动产生一个新模型 m,计算相应 的目标函数值 E (m) ,得到 ΔE = E (m) - E (m0 )。

(3)若 ΔE < 0,则新模型被接受 ;若 ΔE > 0,则新模型 m 按概率 P = exp ( -ΔE/T)进行接受 , T为温度。当模型被接 受时 ,置 m0 =m, E (m0 ) = E (m)。

(4)在温度 T下 ,重复一定次数的扰动和接受过程 ,即 重复步骤 (2)、(3)。

(5)缓慢降低温度 T。 

(6)重复步骤 (2)、(5) ,直至收敛条件满足为止。

算法的实质分两次循环 ,随机扰动产生新模型并计算 目标函数值 (或称能量 )的变化 ,决定是否被接受。由于算 法初始温度设计在高温条件 ,这使得 E增大的模型可能被 接受 ,因而能舍去局部极小值 ,通过缓慢地降低温度 ,算法 最终能收敛到全局最优点。

实验用例:用模拟退火算法解决如下 10 个城市的 TSP 问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出。 问题描述如下: 有若干个城市,任何两个城市之间的距离都是确定的,现要求一旅行商从某城市出发必须经过每一个城市且只在一个城市逗留一次,最后回到出发的城市,问如何事先确定一条最短的线路已保证其旅行的费用最少?),该问题最优解为 f_opt = 2.691。

编程实现 

用 MATLAB 实现模拟退火算法时,共编制了 5 个 m 文件,分别如下

  1. swap.m

function [ newpath , position ] = swap( oldpath , number )% 对 oldpath 进 行 互 换 操 作% number 为 产 生 的 新 路 径 的 个 数% position 为 对 应 newpath 互 换 的 位 置m = length( oldpath ) ; % 城 市 的 个 数newpath = zeros( number , m ) ;position = sort( randi( m , number , 2 ) , 2 ); % 随 机 产 生 交 换 的 位 置for i = 1 : number newpath( i , : ) = oldpath ;% 交 换 路 径 中 选 中 的 城 市 newpath( i , position( i , 1 ) ) = oldpath( position( i , 2 ) ) ; newpath( i , position( i , 2 ) ) = oldpath( position( i , 1 ) ) ;end

2.pathfare.m

function [ objval ] = pathfare( fare , path )% 计 算 路 径 path 的 代 价 objval% path 为 1 到 n 的 排 列 ,代 表 城 市 的 访 问 顺 序 ;% fare 为 代 价 矩 阵 , 且 为 方 阵 。[ m , n ] = size( path ) ;objval = zeros( 1 , m ) ;for i = 1 : m for j = 2 : n  objval( i ) = objval( i ) + fare( path( i , j - 1 ) , path( i , j ) ) ; end objval( i ) = objval( i ) + fare( path( i , n ) , path( i , 1 ) ) ;end

3、distance.m

function [ fare ] = distance( coord )% 根 据 各 城 市 的 距 离 坐 标 求 相 互 之 间 的 距 离% fare 为 各 城 市 的 距 离 , coord 为 各 城 市 的 坐 标[ ~ , m ] = size( coord ) ; % m 为 城 市 的 个 数fare = zeros( m ) ;for i = 1 : m % 外 层 为 行 for j = i : m % 内 层 为 列 fare( i , j ) = ... ( sum( ( coord( : , i ) - coord( : , j ) ) .^ 2 ) ) ^ 0.5 ; fare( j , i ) = fare( i , j ) ; % 距 离 矩 阵 对 称 endend

4、myplot.m

function [ ] = myplot( path , coord , pathfar )% 做 出 路 径 的 图 形% path 为 要 做 图 的 路 径 ,coord 为 各 个 城 市 的 坐 标% pathfar 为 路 径 path 对 应 的 费 用len = length( path ) ;clf ;hold on ;title( [ '近似最短路径如下,费用为' , num2str( pathfar ) ] ) ;plot( coord( 1 , : ) , coord( 2 , : ) , 'ok');pause( 0.4 ) ;for ii = 2 : len plot( coord( 1 , path( [ ii - 1 , ii ] ) ) , coord( 2 , path( [ ii - 1 , ii ] ) ) , '-b'); x = sum( coord( 1 , path( [ ii - 1 , ii ] ) ) ) / 2 ; y = sum( coord( 2 , path( [ ii - 1 , ii ] ) ) ) / 2 ; text( x , y , [ '(' , num2str( ii - 1 ) , ')' ] ) ; pause( 0.4 ) ;endplot( coord( 1 , path( [ 1 , len ] ) ) , coord( 2 , path( [ 1 , len ] ) ) , '-b' ) ;x = sum( coord( 1 , path( [ 1 , len ] ) ) ) / 2 ;y = sum( coord( 2 , path( [ 1 , len ] ) ) ) / 2 ;text( x , y , [ '(' , num2str( len ) , ')' ] ) ;pause( 0.4 ) ;hold off ;

5、mySAA.m

% 模 拟 退 火 算 法 ( Simulated Annealing Algorithm ) MATLAB 程 序clear ;% 程 序 参 数 设 定Coord = ... % 城 市 的 坐 标 Coordinates [ 0.6683 0.6195 0.4 0.2439 0.1707 0.2293 0.5171 0.8732 0.6878 0.8488 ; ... 0.2536 0.2634 0.4439 0.1463 0.2293 0.761 0.9414 0.6536 0.5219 0.3609 ] ;t0 = 1 ; % 初 温 t0iLk = 20 ; % 内 循 环 最 大 迭 代 次 数 iLkoLk = 50 ; % 外 循 环 最 大 迭 代 次 数 oLklam = 0.95 ; % λ lambdaistd = 0.001 ; % 若 内 循 环 函 数 值 方 差 小 于 istd 则 停 止ostd = 0.001 ; % 若 外 循 环 函 数 值 方 差 小 于 ostd 则 停 止ilen = 5 ; % 内 循 环 保 存 的 目 标 函 数 值 个 数olen = 5 ; % 外 循 环 保 存 的 目 标 函 数 值 个 数% 程 序 主 体m = length( Coord ) ; % 城 市 的 个 数 m fare = distance( Coord ) ; % 路 径 费 用 farepath = 1 : m ; % 初 始 路 径 pathpathfar = pathfare( fare , path ) ; % 路 径 费 用 path fareores = zeros( 1 , olen ) ; % 外 循 环 保 存 的 目 标 函 数 值e0 = pathfar ; % 能 量 初 值 e0t = t0 ; % 温 度 tfor out = 1 : oLk % 外 循 环 模 拟 退 火 过 程 ires = zeros( 1 , ilen ) ; % 内 循 环 保 存 的 目 标 函 数 值 for in = 1 : iLk % 内 循 环 模 拟 热 平 衡 过 程 [ newpath , ~ ] = swap( path , 1 ) ; % 产 生 新 状 态 e1 = pathfare( fare , newpath ) ; % 新 状 态 能 量 % Metropolis 抽 样 稳 定 准 则 r = min( 1 , exp( - ( e1 - e0 ) / t ) ) ; if rand < r path = newpath ; % 更 新 最 佳 状 态 e0 = e1 ; end ires = [ ires( 2 : end ) e0 ] ; % 保 存 新 状 态 能 量 % 内 循 环 终 止 准 则 :连 续 ilen 个 状 态 能 量 波 动 小 于 istd if std( ires , 1 ) < istd break ; end end ores = [ ores( 2 : end ) e0 ] ; % 保 存 新 状 态 能 量% 外 循 环 终 止 准 则 :连 续 olen 个 状 态 能 量 波 动 小 于 ostd if std( ores , 1 ) < ostd break ; end t = lam * t ; endpathfar = e0 ;% 输 入 结 果fprintf( '近似最优路径为:\n ' )%disp( char( [ path , path(1) ] + 64 ) ) ;disp(path)fprintf( '近似最优路径费用\tpathfare=' ) ;disp( pathfar ) ;myplot( path , Coord , pathfar ) ;

我试着运行了几次(只是改变了一下初温,也可以更改一下其他参数),发现初始温度 t0=1 时程序的最后结果与最优解差距小的概率比较大。 希望对大家有用!!​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/419052.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ElasticSearch的DSL查询⑤(ES数据聚合、DSL语法数据聚合、RestClient数据聚合)

目录 一、数据聚合 1.1 DSL实现聚合 1.1.1 Bucket聚合 1.1.2 带条件聚合 1.1.3 Metric聚合 1.1.4 总结 2.1 RestClient实现聚合 2.1.1 Bucket聚合 2.1.2 带条件聚合 2.2.3 Metric聚合 一、数据聚合 聚合&#xff08;aggregations&#xff09;可以让我们极其方便的实…

oracle数据块内部结构详解

文章目录 Oracle数据块详解概述Oracle块具有以下特点&#xff1a;① 最小的I/O单元&#xff1b;② 包含一个或多个OS块&#xff1b;③ 大小由参数DB_BLOCK_SIZE决定&#xff1b;④ 数据库创建时设置&#xff0c;数据库创建后不能更改 Oracle数据块详解 概述 操作系统块是…

音频-语言大模型原理

重磅推荐专栏: 《大模型AIGC》 《课程大纲》 《知识星球》 本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经…

Flutter中自定义气泡框效果的实现

在用户界面的设计中&#xff0c;气泡框&#xff08;Bubble&#xff09;是一种非常有效的视觉工具&#xff0c;它可以用来突出显示信息或提示用户。气泡框广泛应用于聊天应用、通知提示等场景。在 Flutter 中&#xff0c;虽然有很多现成的气泡框组件&#xff0c;但如果你想要更多…

c# checkbox的text文字放到右边

checkbox的text文字放到右边 实现方法如下图 特此记录 anlog 2024年9月2日

[数据集][目标检测]石油泄漏检测数据集VOC+YOLO格式6633张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;6633 标注数量(xml文件个数)&#xff1a;6633 标注数量(txt文件个数)&#xff1a;6633 标注…

提前购|基于SSM+vue的创新型产品提前购平台(源码+数据库+文档)

创新型产品提前购平台 基于SSMvue的创新型产品提前购平台 一、前言 二、系统设计 三、系统功能设计 系统功能实现 后台模块实现 管理员模块实现 发布企业管理实现 个体管理实现 投资企业管理实现 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选…

剪映剪辑影视视频字幕声音批量自动对齐教程

一款智能软件&#xff0c;用它结合剪映或CapCut 你就可以快速将一个视频翻译为另一种语言&#xff0c;非常适合做TikTok中视频的用户&#xff0c;无论是英语区法语区还是日语区&#xff0c;这款名为谷哥剪映助手的软件都能成倍提升你的剪辑效率。 让我来给大家介绍它的使用方法…

C++中的一个标准输出流——cout

目录 开头1.什么是cout?2.C中的一个标准输出流——cout的实际应用打印“Hello, world!”打印大方块打印一个变量 下一篇博客要说的东西 开头 大家好&#xff0c;我叫这是我58。今天&#xff0c;我们要学一下关于C中的一个标准输出流——cout的一些知识。 1.什么是cout? cou…

小阿轩yx-Kubernertes日志收集

小阿轩yx-Kubernertes日志收集 前言 在 Kubernetes 集群中如何通过不同的技术栈收集容器的日志&#xff0c;包括程序直接输出到控制台日志、自定义文件日志等 有哪些日志需要收集 日志收集与分析很重要&#xff0c;为了更加方便的处理异常 简单总结一些比较重要的需要收集…

无需更换摄像头,无需施工改造,降低智能化升级成本的智慧工业开源了

智慧工业视觉监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒&#xff0c;省去繁琐重复的适配流程&#xff0c;实现芯片、算法、应用的全流程组合&#xff0c;从而大大减少企业级应用约95%的开发成本。用户只需在界面上…

ffmpeg 视频编码及基本知识

理论 H264编码原理&#xff08;简略&#xff09; 1. 视频为什么需要进行编码压缩 降低视频数据大小&#xff0c;方便存储和传输 2. 为什么压缩的原始数据采用YUV格式 彩色图像的格式是 RGB 的&#xff0c;但RGB 三个颜色是有相关性的。 采用YUV格式&#xff0c;利用人对图像的…

网络安全入门教程(非常详细)从零基础入门到精通,看完这一篇你就是网络安全高手了。

关于我 我算是“入行”不久的一个新人安全工作者&#xff0c;为什么是引号呢&#xff0c;因为我是个“半个野路子”出身。早在13年的时候&#xff0c;我在初中时期就已经在90sec、wooyun等社区一直学习、报告漏洞。后来由于升学的压力&#xff0c;我逐渐淡出了安全圈子&#x…

攻防世界--->回复 1

开学水题笔记(不是&#xff0c;水题。找点&#xff0c;自信心 T^T )。 下载解压查壳。 32ida打开。 进入main函数。 如下&#xff1a; 关键部分&#xff1a; v5的值未知&#xff0c;说明存在于内存中&#xff0c;直接动调就好了。 DUTCTF{We1c0met0DUTCTF}

综合案例-数据可视化-折线图

一、json数据格式 1.1 json数据格式的定义与功能 json是一种轻量级的数据交互格式&#xff0c;可以按照json指定的格式去组织和封装数据&#xff0c;json数据格式本质上是一个带有特定格式的字符串。 功能&#xff1a;json就是一种在各个编程语言中流通的数据格式&#xff0…

MFC工控项目实例之十一板卡测试信号输入界面

承接专栏《MFC工控项目实例之十添加系统测试对话框》 相关代码 1、在BoardTest.h文件中添加代码 class CBoardTest : public CDialog { // Construction public:CBoardTest(CWnd* pParent NULL); // standard constructorCButtonST m_btnStart[16];CWinThread* pThread…

深入FastAPI:掌握使用多个关联模型的高级用法[Union类型]

在FastAPI中&#xff0c;响应模型可以声明为Union类型&#xff0c;这允许你为同一个端点定义多种可能的响应模型。这种灵活性使得API可以根据不同的情况返回不同类型的数据结构。 例如&#xff0c;根据请求中的查询参数或数据库中的数据&#xff0c;一个API端点可能有时返回一…

数学建模_数据预处理流程(全)

数据预处理整体流程图 一般数据预处理流程 处理缺失值&#xff1a;填补或删除缺失值。处理异常值&#xff1a;检测并处理异常值。数据编码&#xff1a;将分类变量进行标签编码或独热编码。数据标准化/归一化&#xff1a;对数据进行标准化或归一化处理。连续变量离散化&#xff…

微信小程序页面制作——个人信息

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

在Unity环境中使用UTF-8编码

为什么要讨论这个问题 为了避免乱码和更好的跨平台 我刚开始开发时是使用VS开发,Unity自身默认使用UTF-8 without BOM格式,但是在Unity中创建一个脚本,使用VS打开,VS自身默认使用GB2312(它应该是对应了你电脑的window版本默认选取了国标编码,或者是因为一些其他的原因)读取脚本…