使用LLaMA-Factory快速训练自己的专用大模型

本文聊聊 LLama-Factory,它是一个开源框架,这里头可以找到一系列预制的组件和模板,让你不用从零开始,就能训练出自己的语言模型(微调)。不管是聊天机器人,还是文章生成器,甚至是问答系统,都能搞定。而且,LLama-Factory 还支持多种框架和数据集,这意味着你可以根据项目需求灵活选择,把精力集中在真正重要的事情上——创造价值。

使用LLama-Factory,常见的就是训练LoRA模型,增强模型在某方面的生成能力。本教程将以增强 GLM-4-9B-Chat 模型的脑筋急转弯能力为例,演示LoRA模型的微调方法。

环境准备

本地使用

LLama-Factory 的安装比较简单,大家直接看官网页面就够了:

github.com/hiyouga/LLa…

云镜像

如果你本地没有一张好显卡,也不想费劲的安装,就想马上开始训练。

可以试试我的云镜像,开箱即用:www.haoee.com/application…

平台注册就送一定额度,可以完成本教程的的演示示例。

镜像已经内置了几个基础模型,大都在6B-9B,单卡24G显存即可完成LoRA微调。

如果要微调更大的模型,则需要更多的显卡和显存,请在购买GPU时选择合适的显卡和数量。

已经内置的模型:Yi-1.5-9B-Chat、Qwen2-7B、meta-llama-3.1-8b-instruct、glm-4-9b-chat、chatglm3-6b

如果缺少你需要的模型,可以给我反馈。

假设你已经解决了程序运行环境问题,下边将开始讲解 LLama-Factory 的使用方法。

LLama-Factory 直接命令行和Web页面训练,为了方便入门,这篇文章以Web页面训练为例。

选择基础模型

语言:zh,因为我们要微调的是中文模型。

模型选择:GLM-4-9B-Chat

模型路径:/root/LLaMA-Factory/models/glm-4-9b-chat,默认会自动下载模型,不过速度可能比较慢,我们的镜像中已经下载好这个模型,所以直接填写路径更快。

微调方法:lora

准备训练数据集

LLaMA-Factory自带了一些常用的数据集,如果你使用的数据集不在里边,可以修改 data/dataset_info.json,在其中增加自己的数据集。

这里我使用的是一个弱智吧问答数据集,数据集的格式是 alpaca,来源:huggingface.co/datasets/Lo…

训练参数设置

训练参数需要根据实际训练效果进行调整,这里给出一个参考设置。

数据集:请根据你的需要选择,这里选择我上边定义的 ruozhiba_qa。

学习率:1e-4,设置的大点,有利于模型拟合。

计算类型:如果显卡较旧,建议计算类型选择fp16;如果显卡比较新,建议选择bf16。

梯度累计:2,有利于模型拟合。

LoRA+学习率比例:16,相比LoRA,LoRA+续写效果更好。

LoRA作用模块:all 表示将LoRA层挂载到模型的所有线性层上,提高拟合效果。

开始训练

点击“开始”按钮,可以在页面上看到训练进度和训练效果。

根据训练方法和训练数据的大小,训练需要的时间不定。

推理测试

在“检查点路径”这里加载刚刚训练的LoRA模型,然后切换到“Chat”页签,点击“加载模型”。

测试完毕后,记得点击“卸载模型”,因为模型占用显存比较大,不释放的话,再进行别的任务可能会出错。

对比训练前后的变化:

训练前:

训练后:

这是一个比较感性的测试,如果需要更为正式的效果评估,请使用“Evaluate & Predict” 选择合适的评测数据集进行评估。

合并导出模型

有时候我们需要把模型导出来放在别的地方使用,输出一个完整的模型文件,而不是基础模型+LoRA模型。

检查点路径:训练出来的LoRA模型

导出目录:设置一个服务器上的路径,新的模型会存放到这里。

最后点击“开始导出”就行了。导出完毕后,请前往服务器相关的路径中下载模型。

LLaMA-Factory 架构

最后送大家一张 LLaMA-Factory 的架构图,方便理解其原理。

图片左侧:显示了 LLaMA-Factory 的架构,分为四个主要部分:LlamaBoard、Trainer、Model Loader 和 Data Worker。

  • LlamaBoard:用于参数配置和训练状态监视。
  • Trainer:负责优化和训练方法的选择,如 LoRA+、GaLoRe、Pre-train、SFT 等。
  • Model Loader:负责模型初始化、补丁、量化和适配器等功能。
  • Data Worker:负责加载、对齐、预处理和合并训练数据。

图片右侧:列出了支持的流行语言模型和大小,以及支持的训练方法。

  • 支持的语言模型和大小:LLaMA、LLaMA-2、LLaMA-3、Command-R、Mistral/Mixtral、OLMo、Phi-1.5/2、Qwen、DeepSeek (MoE)、Falcon、Gemma/CodeGemma 和 StarCoder2。
  • 支持的训练方法:全量调整、冻结调整、LoRA、QLoRA、奖励建模、PPO 训练、DPO 训练、ORPO 训练。

总体上来说,LLama-Factory 的使用还是挺顺利的,没有太多的坑。

听不如见,见不如做,自己动手,才能真正有所感悟!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/420362.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【大模型专栏—入门篇】机器学习与深度学习基础测试

大模型专栏介绍 😊你好,我是小航,一个正在变秃、变强的文艺倾年。 🔔本文为大模型专栏子篇,大模型专栏将持续更新,主要讲解大模型从入门到实战打怪升级。如有兴趣,欢迎您的阅读。 &#x1f4…

(Charles)如何抓取手机http的报文

抓包的目的: 发现bug需要定位要抓包 检查数据传输的安全性 接口测试遇到需求文档不全要抓包 抓包主要抓取的是http协议(https协议)的报文 http协议规范客户端和服务端的数据传输格式,是一个标准和规范 每个http连接包括请求消息和…

Oracle OCP认证值得考吗? 需要门槛吗?

随着数据量的爆炸性增长和企业对数据依赖性的提升,对数据库专业人士的需求也在不断上升。OCP认证,作为Oracle公司提供的权威认证之一,长期以来被视为数据库专业人士技能和知识水平的重要标志。 但随着技术的发展和认证种类的增多,…

数据结构基础讲解(七)——数组和广义表专项练习

本文数据结构讲解参考书目: 通过网盘分享的文件:数据结构 C语言版.pdf 链接: https://pan.baidu.com/s/159y_QTbXqpMhNCNP_Fls9g?pwdze8e 提取码: ze8e 数据结构基础讲解(六)——串的专项练习-CSDN博客 个人主页:樱娆…

教你用 Python 自制简单版《我的世界》

《我的世界 Minecraft》大家应该都听说过,但你有没有想过自己写一个这样的游戏呢?太难、太复杂了?也许吧,但是不试一试你怎么知道能不能成呢? 国外有位叫fogleman的开发者就用Python做了这样的一件事——自制《我的世…

【Qt网络】—— Qt网络编程

目录 (一)UDP Socket 1.1 核心API概览 1.2 代码示例 1.2.1 回显服务器 1.2.2 回显客户端 (二)TCP Socket 2.1 核心API概览 2.2 代码示例 2.2.1 回显服务器 2.2.2 回显客户端 (三)HTTP Client 3…

虚拟现实智能家居实训系统实训解决方案

随着科技的飞速发展,智能家居已成为现代生活的重要组成部分,它不仅极大地提升了居住的便捷性与舒适度,还推动了物联网、大数据、人工智能等前沿技术的融合应用。为了满足市场对智能家居专业人才日益增长的需求,虚拟现实智能家居实…

Mongodb 4.2.25 安装教程

一、上传部署包 1.1上传mongodb包进入/usr/local目录,将mongodb-linux-x86_64-rhel70-4.2.25.tgz包传到该目录下。 cd /usr/local 二、安装 2.1解压 tar zxvf mongodb-linux-x86_64-rhel70-4.2.25.tgz 2.2修改名称 mv mongodb-linux-x86_64-rhel70-4.2.25/ mong…

突破最强算法模型,Transformer !!

这几天,大家对于Transformer的问题,还是不少。 今儿再和大家聊聊~ 简单来说,Transformer 是一种神经网络模型,在机器翻译、语言理解等任务中表现特别好。它的核心思想是自注意力机制(Self-Attention)&…

反序列化漏洞练习2

拿到题目&#xff0c;发现目标是获得flag.php的内容,且sis中admin和passwd等于sis2407时会输出fag的内容 根据源码编写序列化代码 <?php error_reporting(0); class sis{public $admin;public $passwd;public function __construct(){$this->admin "sis2407"…

【redis】认识redis和分布式系统

文章目录 认识 redisredis 的主要功能实现数据库实现缓存实现消息中间件 基础概念评价指标 分布式系统单机架构为什么数据多了主机就难以应对 &#xff1f;分布式系统 认识 redis redis 的主要功能 用来在内存中存储数据 定义变量不就是在内存中存储数据吗&#xff1f;为什么…

Python计算机视觉 第7章-图像搜索

Python计算机视觉 第7章-图像搜索 7.1 基于内容的图像检索 在大型图像数据库上&#xff0c;CBIR&#xff08;Content-Based Image Retrieval&#xff0c;基于内容的图像检索&#xff09;技术用于检索在视觉上具相似性的图像。这样返回的图像可以是颜色相似、纹理相似、图像中…

halcon try_catch无try不项目

#1&#xff0c;没有用过try的人&#xff0c;肯定是没有真正实战做过项目的。 #2&#xff0c;try_catch又被称为抓异常语句&#xff0c;出现异常的代码会在 exception里进行显示&#xff0c;这个exception就是一个字符串的数组。 #3&#xff0c;为什么要用&#xff0c;halcon的一…

OpenCV结构分析与形状描述符(13)拟合椭圆函数fitEllipseDirect()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆&#xff0c;该椭圆拟合一组2D点。它返回一个内切于该椭圆的旋转矩形。使用了由[91]提出的直接…

将字符串序列中的每个字符串,用字符“0“扩充到x位 Series.str.zfill(x)

【小白从小学Python、C、Java】 【考研初试复试毕业设计】 【Python基础AI数据分析】 将字符串序列中的每个字符串sn 如果sn的位数不足x位 则在sn左侧补充0凑齐x位 即在sn左侧补充x-sn个0 Series.str.zfill(x) 选择题 关于以下代码输出结果的说法中正确的是? import pandas …

在国产芯片上实现YOLOv5/v8图像AI识别-【4.4】RK3588网络摄像头推理后推流到RTSP更多内容见视频

本专栏主要是提供一种国产化图像识别的解决方案&#xff0c;专栏中实现了YOLOv5/v8在国产化芯片上的使用部署&#xff0c;并可以实现网页端实时查看。根据自己的具体需求可以直接产品化部署使用。 B站配套视频&#xff1a;https://www.bilibili.com/video/BV1or421T74f 前言…

基于微信小程序点餐、外卖系统的设计与实现 (源码+lw+参考文档+核心代码讲解等)

基于微信小程序点餐、外卖系统的设计与实现(源码lw部署文档讲解等) 项目概述&#xff1a; 这段时间做了一个关于点餐的小程序&#xff0c;也是学习和总结的一部分&#xff0c;希望对大家有所帮助。本课题的主要目标是设计并能够实现一个基于微信小程序点餐系统。项目采用的是…

transforemr网络理解

1.transformer网络中数据的流动过程&#xff1a; 2.transformer中残差的理解&#xff1a; 残差连接&#xff08;Residual Connection&#xff09; 的核心思想就是通过将输入与经过变化的输出相加&#xff0c;来最大限度地保留原始信息。 transforemr中注意力层网络和前馈神经…

GMS地下水数值模拟及溶质(包含反应性溶质)运移模拟技术深度应用

以地下水数值模拟软件GMS操作为主要授课内容&#xff0c;在教学中强调模块化教学&#xff0c;分为前期数据收集与处理&#xff1b;三维地质结构建模&#xff1b;地下水流动模型构建&#xff1b;地下水溶质运移模型构建和反应性溶质运移构建5个模块&#xff1b;采用全流程模式将…

计算机技术专硕,三维数字地球的学习路径?

三维数字地球是一个跨学科领域&#xff0c;涉及地理信息系统&#xff08;GIS&#xff09;、计算机图形学、遥感技术、大数据处理等多个方面。作为计算机技术专硕的学生&#xff0c;可以按照以下学习路径来逐步深入&#xff1a; 1、基础理论学习&#xff1a; 地理信息系统&…