linux input子系统深度剖析

input 就是输入的意思,因此 input 子系统就是管理输入的子系统,和 pinctrl gpio 子系统
一样,都是 Linux 内核针对某一类设备而创建的框架。比如按键输入、键盘、鼠标、触摸屏等
等这些都属于输入设备,不同的输入设备所代表的含义不同,按键和键盘就是代表按键信息,
鼠标和触摸屏代表坐标信息,因此在应用层的处理就不同,对于驱动编写者而言不需要去关心
应用层的事情,我们只需要按照要求上报这些输入事件即可。为此 input 子系统分为 input 驱动
层、 input 核心层、 input 事件处理层,最终给用户空间提供可访问的设备节点。
中左边就是最底层的具体设备,比如按键、 USB 键盘 / 鼠标等,中间部分属于Linux 内核空间,分为驱动层、核心层和事件层,最右边的就是用户空间,所有的输入设备以文件的形式供用户应用程序使用。可以看出 input 子系统用到了我们前面讲解的驱动分层模型,我们编写驱动程序的时候只需要关注中间的驱动层、核心层和事件层,这三个层的分工如下: 驱动层:输入设备的具体驱动程序,比如按键驱动程序,向内核层报告输入内容。
核心层:承上启下,为驱动层提供输入设备注册和操作接口。通知事件层对输入事件进行
处理。
事件层:主要和用户空间进行交互。
input 核心层会向 Linux 内核注册一个字符设备,大家找到 drivers/input/input.c 这个文件,
input.c 就是 input 输入子系统的核心层,此文件里面有如下所示代码:
1767 struct class input_class = {
1768 .name = "input",
1769 .devnode = input_devnode,
1770 };
......
2414 static int __init input_init(void)
2415 {
2416 int err;
2417
2418 err = class_register(&input_class);
2419 if (err) {
2420 pr_err("unable to register input_dev class\n");
2421 return err;
2422 }
2423
2424 err = input_proc_init();
2425 if (err)
2426 goto fail1;
2427
2428 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2429 INPUT_MAX_CHAR_DEVICES, "input");
2430 if (err) {
2431 pr_err("unable to register char major %d", INPUT_MAJOR);
2432 goto fail2;
2433 }
2434
2435 return 0;
2436
2437 fail2: input_proc_exit();
2438 fail1: class_unregister(&input_class);
2439 return err;
2440 }
注册一个 input 类,这样系统启动以后就会在 /sys/class 目录下有一个 input 子目录。
注册一个字符设备,主设备号为 INPUT_MAJOR INPUT_MAJOR 定义在 include/uapi/linux/major.h 文件中,
#define INPUT_MAJOR 13
input 子系统的所有设备主设备号都为 13 ,我们在使用 input 子系统处理输入设备的时候就不需要去注册字符设备了,我们只需要向系统注册一个 input_device 即可。


1、注册 input_dev

在使用 input 子系统的时候我们只需要注册一个 input 设备即可, input_dev 结构体表示 input
设备,此结构体定义在 include/linux/input.h 文件中,定义如下 ( 有省略 )
121 struct input_dev {
122 const char *name;
123 const char *phys;
124 const char *uniq;
125 struct input_id id;
126
127 unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)];
128
129 unsigned long evbit[BITS_TO_LONGS(EV_CNT)]; /* 事件类型的位图 */
130 unsigned long keybit[BITS_TO_LONGS(KEY_CNT)]; /* 按键值的位图 */
131 unsigned long relbit[BITS_TO_LONGS(REL_CNT)]; /* 相对坐标的位图 */ 
132 unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; /* 绝对坐标的位图 */
133 unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; /* 杂项事件的位图 */
134 unsigned long ledbit[BITS_TO_LONGS(LED_CNT)]; /*LED 相关的位图 */
135 unsigned long sndbit[BITS_TO_LONGS(SND_CNT)];/* sound 有关的位图 */
136 unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; /* 压力反馈的位图 */
137 unsigned long swbit[BITS_TO_LONGS(SW_CNT)]; /*开关状态的位图 */
......
189 bool devres_managed;
190 };
evbit 表示输入事件类型,可选的事件类型定义在 include/uapi/linux/input.h 文件中,事件类型如下:
#define EV_SYN 0x00 /* 同步事件
*/
#define EV_KEY 0x01 /* 按键事件
*/
#define EV_REL 0x02 /* 相对坐标事件
*/
#define EV_ABS 0x03 /* 绝对坐标事件
*/
#define EV_MSC 0x04 /* 杂项 ( 其他 ) 事件 */
#define EV_SW 0x05 /* 开关事件
*/
#define EV_LED 0x11 /* LED
*/
#define EV_SND 0x12 /* sound( 声音 )
*/
#define EV_REP 0x14 /* 重复事件
*/
#define EV_FF 0x15 /* 压力事件
*/
#define EV_PWR 0x16 /* 电源事件
*/
#define EV_FF_STATUS 0x17 /* 压力状态事件
*/
比如本章我们要使用到按键,那么就需要注册 EV_KEY 事件,如果要使用连按功能的话
还需要注册 EV_REP 事件。
evbit keybit relbit 等等都是存放不同事件对应的值。比如我们本章要使用按键事件,因此要用到 keybit keybit 就是按键事件使用的位图,Linux 内核定义了很多按键值,这些按键值定义在 include/uapi/linux/input.h 文件中,按键值如下:
215 #define KEY_RESERVED 0
216 #define KEY_ESC 1
217 #define KEY_1 2
218 #define KEY_2 3
219 #define KEY_3 4
220 #define KEY_4 5
221 #define KEY_5 6
222 #define KEY_6 7
223 #define KEY_7 8
224 #define KEY_8 9
225 #define KEY_9 10
226 #define KEY_0 11
......
794 #define BTN_TRIGGER_HAPPY39 0x2e6
795 #define BTN_TRIGGER_HAPPY40 0x2e7
我们可以将开发板上的按键值设置为示例代码 58.1.2.4 中的任意一个,比如我们本章实验
会将 I.MX6U-ALPHA 开发板上的 KEY 按键值设置为 KEY_0 。在编写 input 设备驱动的时候我们需要先申请一个 input_dev 结构体变量,使用 input_allocate_device 函数来申请一个 input_dev。
struct input_dev *input_allocate_device(void)
void input_free_device(struct input_dev *dev)
int input_register_device(struct input_dev *dev)
void input_unregister_device(struct input_dev *dev)
①、使用 input_allocate_device 函数申请一个 input_dev
②、初始化 input_dev 的事件类型以及事件值。
③、使用 input_register_device 函数向 Linux 系统注册前面初始化好的 input_dev
④、卸载 input 驱动的时候需要先使用 input_unregister_device 函数注销掉注册的 input_dev
然后使用 input_free_device 函数释放掉前面申请的 input_dev input_dev
1 struct input_dev *inputdev; /* input 结构体变量 */
2 
3 /* 驱动入口函数 */
4 static int __init xxx_init(void)
5 {
6 ......
7 inputdev = input_allocate_device(); /* 申请 input_dev */
8 inputdev->name = "test_inputdev"; /* 设置 input_dev 名字 */
9 
10 /*********第一种设置事件和事件值的方法***********/
11 __set_bit(EV_KEY, inputdev->evbit); /* 设置产生按键事件 */
12 __set_bit(EV_REP, inputdev->evbit); /* 重复事件 */
13 __set_bit(KEY_0, inputdev->keybit); /*设置产生哪些按键值 */
14 /************************************************/
15 
16 /*********第二种设置事件和事件值的方法***********/
17 keyinputdev.inputdev->evbit[0] = BIT_MASK(EV_KEY) |
BIT_MASK(EV_REP);
18 keyinputdev.inputdev->keybit[BIT_WORD(KEY_0)] |=
BIT_MASK(KEY_0);
19 /************************************************/
20
21 /*********第三种设置事件和事件值的方法***********/
22 keyinputdev.inputdev->evbit[0] = BIT_MASK(EV_KEY) |
BIT_MASK(EV_REP);
23 input_set_capability(keyinputdev.inputdev, EV_KEY, KEY_0);
24 /************************************************/
25 
26 /* 注册 input_dev */
27 input_register_device(inputdev);
28 ......
29 return 0;
30 }
31
32 /* 驱动出口函数 */
33 static void __exit xxx_exit(void)
34 {
35 input_unregister_device(inputdev); /* 注销 input_dev */
36 input_free_device(inputdev); /* 删除 input_dev */
37 }
定义一个 input_dev 结构体指针变量。驱动入口函数,在此函数中完成 input_dev 的申请、设置、注册等工作。第 7 行调用 input_allocate_device 函数申请一个 input_dev。第 10~23 行都是设置 input 设备事件和按键值,这里用了三种方法来设置事件和按键值。第 27 行调用 input_register_device 函数向 Linux 内核注册 inputdev。驱动出口函数,第 35 行调用 input_unregister_device 函数注销前面注册的 input_dev,第 36 行调用 input_free_device 函数删除前面申请的 input_dev。
当我们向 Linux 内核注册好 input_dev 以后还不能高枕无忧的使用 input 设备, input 设备都
是具有输入功能的,但是具体是什么样的输入值 Linux 内核是不知道的,我们需要获取到具体
的输入值,或者说是输入事件,然后将输入事件上报给 Linux 内核。比如按键,我们需要在按
键中断处理函数,或者消抖定时器中断函数中将按键值上报给 Linux 内核,这样 Linux 内核才
能获取到正确的输入值。不同的事件,其上报事件的 API 函数不同,我们依次来看一下一些常
用的事件上报 API 函数。
void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
dev :需要上报的 input_dev
type: 上报的事件类型,比如 EV_KEY
code 事件码,也就是我们注册的按键值,比如 KEY_0 KEY_1 等等。
value :事件值,比如 1 表示按键按下, 0 表示按键松开。
input_event 函数可以上报所有的事件类型和事件值, Linux 内核也提供了其他的针对具体
事件的上报函数,这些函数其实都用到了 input_event 函数。比如上报按键所使用的
input_report_key 函数,此函数内容如下:
static inline void input_report_key(struct input_dev *dev,
unsigned int code, int value)
{input_event(dev, EV_KEY, code, !!value);
}
input_report_key 函数的本质就是 input_event 函数,如果要上报按键事件的话还是建议大家使用 input_report_key 函数。
同样的还有一些其他的事件上报函数,这些函数如下所示:
void input_report_rel(struct input_dev *dev, unsigned int code, int value)
void input_report_abs(struct input_dev *dev, unsigned int code, int value)
void input_report_ff_status(struct input_dev *dev, unsigned int code, int value)
void input_report_switch(struct input_dev *dev, unsigned int code, int value)
void input_mt_sync(struct input_dev *dev)
按键的上报事件的参考代码如下
1 /* 用于按键消抖的定时器服务函数 */
2 void timer_function(unsigned long arg)
3 {
4 unsigned char value;
5 
6 value = gpio_get_value(keydesc->gpio); /* 读取 IO 值 */
7 if(value == 0){ /* 按下按键 */
8 /* 上报按键值 */
9 input_report_key(inputdev, KEY_0, 1); /* 最后一个参数 1,按下 */
10 input_sync(inputdev); /* 同步事件 */
11 } else { /* 按键松开 */
12 input_report_key(inputdev, KEY_0, 0); /* 最后一个参数 0,松开 */
13 input_sync(inputdev); /* 同步事件 */
14 } 
15 }
获取按键值,判断按键是否按下。如果按键值为 0 那么表示按键被按下了,如果按键按下的话就要使用input_report_key 函数向 Linux 系统上报按键值,比如向 Linux 系统通知 KEY_0 这个按键按下了。第 12~13 行,如果按键值为 1 的话就表示按键没有按下,是松开的。向 Linux 系统通知
KEY_0 这个按键没有按下或松开了。

input_event 结构体

Linux 内核使用 input_event 这个结构体来表示所有的输入事件, input_envent 结构体定义在
include/uapi/linux/input.h 文件中,结构体内容如下:
24 struct input_event {
25 struct timeval time;
26 __u16 type;
27 __u16 code;
28 __s32 value;
29 };
我们依次来看一下 input_event 结构体中的各个成员变量:
time :时间,也就是此事件发生的时间,为 timeval 结构体类型, timeval 结构体定义如下:
1 typedef long __kernel_long_t;
2 typedef __kernel_long_t __kernel_time_t;
3 typedef __kernel_long_t __kernel_suseconds_t;
4
5 struct timeval {
6 __kernel_time_t tv_sec; /* 秒 */
7 __kernel_suseconds_t tv_usec; /* 微秒 */
8 };
  type: 事件类型,比如 EV_KEY ,表示此次事件为按键事件,此成员变量为 16 位。
  code:事件码,比如在 EV_KEY 事件中 code 就表示具体的按键码,如: KEY_0、KEY_1
  等等这些按键。此成员变量为 16 位。
value:值,比如 EV_KEY 事件中 value 就是按键值,表示按键有没有被按下,如果为 1 的
话说明按键按下,如果为 0 的话说明按键没有被按下或者按键松开了。
input_envent 这个结构体非常重要,因为所有的输入设备最终都是按照 input_event 结构体
呈现给用户的,用户应用程序可以通过 input_event 来获取到具体的输入事件或相关的值,比如
  按键值等。关于 input 子系统就讲解到这里,接下来我们就以开发板上的 KEY0 按键为例,讲
解一下如何编写 input 驱动。        

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/42198.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode40-组合总和II

leetcode 40 思路 在做本题之前可以参考之前的文章:组合总和和组合总和III 本题的关键点是:每个元素只能使用一次,另外本题给的数组是无序的,并且元素之间可能存在重复项,举个例子,candidates [1,2,1,1…

CentOS 7 源码安装libjsoncpp-1.9.5库

安装依赖工具 sudo yum install cmake make gcc cmake 需要升级至 3.8.0 以上可参考:CentOS安装CMakegcc 需要升级至9.0 以上可参考:CentOS 7升级gcc版本 下载源码 wget https://github.com/open-source-parsers/jsoncpp/archive/refs/tags/1.9.5.…

本地部署Stable Diffusion生成爆火的AI图片

直接上代码 Mapping("/send") Post public Object send(Body String promptBody) { JSONObject postSend new JSONObject(); System.out.println(promptBody); JSONObject body JSONObject.parseObject(promptBody); List<S…

知识就是力量——物联网应用技术

基础知识篇 一、常用电子元器件1——USB Type C 接口引脚详解特点接口定义作用主从设备关于6P引脚的简介 2——常用通信芯片CH343P概述特点引脚定义 CH340概述特点封装 3——蜂鸣器概述类型驱动电路原文链接 二、常用封装介绍贴片电阻电容封装介绍封装尺寸与功率关系&#xff1…

.Net SSO 单点登录方式

SSO单点登录目的 之前一般来讲系统简单&#xff0c;登录后 本地 cookie 加服务器 session 存储用户身份信息&#xff0c;以此为依据来判断用户再次登录时免验证 但随着互联网发展&#xff0c;很多应用 部署在不同的服务器上&#xff0c;而用户体系是一套&#xff0c;那么按照原…

MyBatis-Flex、MyBatis-Plus 与 Fluent-Mybatis 的比较分析

MyBatis-Flex、MyBatis-Plus 与 Fluent-Mybatis 的比较分析 在日常开发中&#xff0c;很多项目会选择 MyBatis 作为 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;而为了减少样板代码和提升开发效率&#xff0c;各种扩展库层出不穷。其中&#xff0c;MyBatis-Flex…

LVS NAT模式实现三台RS的轮询访问

节点规划: 配置RS&#xff1a; RS1-RS3的网关配置均为 192.168.163.8 配置RS1&#xff1a; [rootlocalhost ~]# hostnamectl hostname rs1 [rootlocalhost ~]# nmcli c modify ens160 ipv4.method manual ipv4.addresses 192.168.163.7/24 ipv4.gateway 192.168.163.8 conne…

软考中级-软件设计师 23种设计模式(内含详细解析)

23种设计模式 &#x1f3af; 创建型设计模式&#x1f4cc; 抽象工厂&#xff08;Abstract Factory&#xff09; 设计模式&#x1f4cc; 工厂方法&#xff08;Factory Method&#xff09;设计模式&#x1f4cc; 单例&#xff08;Singleton&#xff09;设计模式&#x1f4cc; 生成…

子数组 之 logTrick算法,求解或,与,LCM,GCD

文章目录 gcd的问题最大公约数 求解子数组的&,|,lcm,gcd的最值or计数问题&#xff0c;如果采用暴力的做法&#xff0c;那么时间复杂度会来到o(n^2),其实在求解的过程中&#xff0c;会出现很多的结果不变的情况&#xff0c;所以我们就可以提前结束 存在一定的单调性&#x…

密码学——知识问答

目录 1、阐述公开密钥算法的定义&#xff0c;结合RSA算法说明公钥密码的基本要求。 说明公钥与私钥两种密码学并举例与其应用 1. 公钥密码学&#xff08;非对称加密&#xff09;&#xff1a; 2. 私钥密码学&#xff08;对称加密&#xff09;&#xff1a; 对比公钥与私钥密码…

MySQL 表连接(内连接与外连接)

&#x1f3dd;️专栏&#xff1a;Mysql_猫咪-9527的博客-CSDN博客 &#x1f305;主页&#xff1a;猫咪-9527-CSDN博客 “欲穷千里目&#xff0c;更上一层楼。会当凌绝顶&#xff0c;一览众山小。” 目录 1、表连接的核心概念 1.1 为什么需要表连接&#xff1f; 2、内连接&a…

CI/CD(六) helm部署ingress-nginx(阿里云)

零、修改iptable为ipvs&#xff08;可选&#xff09; 修改 kube-proxy 配置&#xff1a; kubectl edit cm kube-proxy -n kube-system # 将 mode 字段改为 "ipvs" 重启 kube-proxy&#xff1a; kubectl delete pod -l k8s-appkube-proxy -n kube-system 验证 IPVS …

Git 之配置ssh

1、打开 Git Bash 终端 2、设置用户名 git config --global user.name tom3、生成公钥 ssh-keygen -t rsa4、查看公钥 cat ~/.ssh/id_rsa.pub5、将查看到的公钥添加到不同Git平台 6、验证ssh远程连接git仓库 ssh -T gitgitee.com ssh -T gitcodeup.aliyun.com

为Windows10的WSL Ubuntu启动sshd服务并使用Trae远程连接

Windows10的WSL Ubuntu&#xff0c;使用起来非常方便&#xff0c;但是美中不足的是&#xff0c;无法从Windows主机ssh到Ubuntu 。 解决的方法是在Ubuntu安装sshd服务 Ubuntu安装sshd服务 执行命令 sudo apt install openssh-server 安装好后&#xff0c;先本地测试&#x…

unity一个图片的物体,会有透明的效果

如图 想要去掉这个透明效果 选择一个高层级的layer即可。

Windows安装Jenkins配置Allure踩坑,必须单独配置当前windows系统为新的node节点,才可在工具位置中指定节点服务器allure的位置

背景 我为了图省事&#xff0c;在Windows上安装运行Jenkins&#xff0c;通过配置gitee插件拉取代码部署接口自动化项目&#xff0c;配置构建后运行Allure报告&#xff0c;结果报错&#xff1a;找不到Allure和生成的数据。 Allure报错信息 ERROR: Step ‘Allure Report’ abort…

MAC terminal

MAC terminal 苹果打开命令行 command 空格键 terminal

VScode-i18n-ally-Vue

参考这篇文章&#xff0c;做Vue项目的国际化配置&#xff0c;本篇文章主要解释&#xff0c;下载了i18n之后&#xff0c;该如何对Vscode进行配置 https://juejin.cn/post/7271964525998309428 i18n Ally全局配置项 Vscode中安装i18n Ally插件&#xff0c;并设置其配置项&#…

xdoj回忆练

今天是我入职阿里第四个年头&#xff0c;忆往昔&#xff0c;上一篇博客还是自己刚毕业在准备秋招面试的时候&#xff0c;真不得不感慨时间的飞逝。 偶然间打开了xdoj&#xff0c;发现当年自己为造福学弟学妹而创办的新生赛&#xff0c;在两年前已经被学弟学妹们关停了&#xf…

面试八股文--框架篇(SSM)

一、Spring框架 1、什么是spring Spring框架是一个开源的Java平台应用程序框架&#xff0c;由Rod Johnson于2003年首次发布。它提供了一种全面的编程和配置模型&#xff0c;用于构建现代化的基于Java的企业应用程序。Spring框架的核心特性包括依赖注入&#xff08;DI&#xf…