基于BiGRU+Attention实现风力涡轮机发电量多变量时序预测(PyTorch版)

风力发电组
前言

系列专栏:【深度学习:算法项目实战】✨︎
涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。

随着全球能源结构的不断转型和可持续发展战略的深入实施,风能作为一种清洁、可再生的能源,其在全球能源供应中的地位日益凸显。风力涡轮机作为风能利用的主要设备,其发电量的准确预测对于电力系统的稳定运行、优化调度以及风电的并网消纳具有重要意义。然而,由于风能的间歇性和不稳定性,风力涡轮机的发电量预测成为了一个极具挑战性的任务。

近年来,深度学习技术在时间序列预测领域展现出了强大的潜力,特别是循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理序列数据方面表现出色。双向门控循环单元(BiGRU)作为GRU的一种扩展,通过同时考虑序列数据中的过去和未来信息,进一步提高了模型捕捉长期依赖关系的能力。此外,注意力机制(Attention)的引入,使得模型能够动态地调整不同时间步长输入特征的权重,从而更加关注对预测结果影响较大的关键信息。

基于上述背景,本文提出了基于BiGRU+Attention的风力涡轮机发电量时序预测模型,旨在通过结合BiGRU和Attention机制的优势,提高风力涡轮机发电量预测的准确性和效率。该模型不仅能够捕捉风力发电量数据中的时序依赖关系,还能通过注意力机制关注对预测结果更为重要的输入特征,从而在复杂多变的风电环境中实现高精度的预测。

本文首先介绍了研究背景与意义,概述了BiGRU和Attention机制的基本原理及其在风力涡轮机发电量预测中的应用潜力。随后,详细描述了模型的构建与训练过程,包括数据收集与预处理、特征提取、时间序列建模、预测输出以及模型训练与性能评估等关键步骤。通过实际案例分析和实验结果展示,验证了该模型在风力涡轮机发电量预测中的有效性和优越性。

基于BiGRU+Attention实现风力涡轮机发电量时序预测

  • 1. 数据集介绍
  • 2. 数据预处理
  • 3. 数据可视化
    • 3.1 数据相关性
  • 4. 特征工程
    • 4.1 特征缩放(归一化)
    • 4.2 构建时间序列数据
    • 4.3 数据集划分
    • 4.4 数据集张量
  • 5. 构建时序模型(TSF)
    • 5.1 构建BiGRU_Attention模型
    • 5.2 定义模型、损失函数与优化器
    • 5.3 模型概要
  • 6. 模型训练与可视化
    • 6.1 定义训练与评估函数
    • 6.2 绘制训练与验证损失曲线
  • 7. 模型评估与可视化
    • 7.1 构建预测函数
    • 7.2 验证集预测
    • 7.3 回归拟合图
    • 7.4 评估指标

1. 数据集介绍

在风力涡轮机中,Scada 系统测量并保存风速、风向、发电量等数据,时间间隔为 10 分钟。该文件取自土耳其一台正在发电的风力涡轮机的 scada 系统。原数据英文及解释如下:

  • Date/Time (for 10 minutes intervals)
  • LV ActivePower (kW): The power generated by the turbine for that moment
  • Wind Speed (m/s): The wind speed at the hub height of the turbine (the wind speed that turbine use for electricity generation)
  • Theoretical_Power_Curve (KWh): The theoretical power values that the turbine generates with that wind speed which is given by the turbine manufacturer
  • Wind Direction (°): The wind direction at the hub height of the turbine (wind turbines turn to this direction automaticly)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as snsfrom sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, \mean_absolute_percentage_error, \mean_squared_error, root_mean_squared_error, \r2_scoreimport torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader, Dataset
from torchinfo import summarynp.random.seed(0)
data = pd.read_csv("T1.csv")
data.head(10).style.background_gradient(cmap='bone')

数据信息

2. 数据预处理

现在,我们使用 pandas.to_datetime 函数,将日期解析为时间数据类型

print(type(data['LV ActivePower (kW)'].iloc[0]),type(data['Date/Time'].iloc[0]))# Let's convert the data type of timestamp column to datatime format
data['Date/Time'] = pd.to_datetime(data['Date/Time'],format='%d %m %Y %H:%M')
print(type(data['LV ActivePower (kW)'].iloc[0]),type(data['Date/Time'].iloc[0]))cond_1 = data['Date/Time'] >= '2018-01-01 00:00:00'
cond_2 = data['Date/Time'] <= '2018-01-07 23:59:59'
data = data[cond_1 & cond_2]
print(data.shape)
<class 'numpy.float64'> <class 'str'>
<class 'numpy.float64'> <class 'pandas._libs.tslibs.timestamps.Timestamp'>
(987, 5)

3. 数据可视化

3.1 数据相关性

使用 data.corr() 计算相关系数矩阵

correlation = data.corr()
print(correlation['LV ActivePower (kW)'].sort_values(ascending=False))
LV ActivePower (kW)              1.000000
Theoretical_Power_Curve (KWh)    0.996930
Wind Speed (m/s)                 0.965048
Wind Direction (°)               0.217183
Date/Time                       -0.028100
Name: LV ActivePower (kW), dtype: float64
plt.figure(figsize=(10, 8))  # 设置图片大小
sns.heatmap(correlation, annot=True, cmap=sns.cubehelix_palette(dark=.20, light=.95, as_cmap=True), linewidths=0.5)
plt.show()

相关性
很明显,LV ActivePower (kW)Theoretical_Power_Curve (KWh)Wind Speed (m/s) 存在强相关性

4. 特征工程

4.1 特征缩放(归一化)

StandardScaler()函数将数据的特征值转换为符合正态分布的形式,它将数据缩放到均值为0,‌标准差为1的区间‌。在机器学习中,StandardScaler()函数常用于不同尺度特征数据的标准化,以提高模型的泛化能力。

# 使用选定的特征来训练模型
features = data.drop('Date/Time', axis=1)
target = data['LV ActivePower (kW)'].values.reshape(-1, 1)
# 创建 StandardScaler实例,对特征进行拟合和变换,生成NumPy数组
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)
target_scaled = scaler.fit_transform(target)
print(features_scaled.shape, target_scaled.shape)

4.2 构建时间序列数据

我们创建一个时间序列数据,时间步 time_steps 假设设置为10

time_steps = 10
X_list = []
y_list = []for i in range(len(features_scaled) - time_steps):X_list.append(features_scaled[i:i+time_steps])y_list.append(target_scaled[i+time_steps])X = np.array(X_list) # [samples, time_steps, num_features]
y = np.array(y_list) # [target]
samples, time_steps, num_features = X.shape

4.3 数据集划分

train_test_split 函数将数组或矩阵随机分成训练子集和测试子集。

X_train, X_valid,\y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=45,shuffle=False)
print(X_train.shape, X_valid.shape, y_train.shape, y_valid.shape)

以上代码中 random_state=45 设置了随机种子,以确保每次运行代码时分割结果的一致性。shuffle=False 表示在分割数据时不进行随机打乱。如果设置为True(默认值),则会在分割之前对数据进行随机打乱,这样可以增加数据的随机性,但时间序列数据具有连续性,所以设置为False

4.4 数据集张量

# 将 NumPy数组转换为 tensor张量
X_train_tensor = torch.from_numpy(X_train).type(torch.Tensor)
X_valid_tensor = torch.from_numpy(X_valid).type(torch.Tensor)
y_train_tensor = torch.from_numpy(y_train).type(torch.Tensor).view(-1, 1)
y_valid_tensor = torch.from_numpy(y_valid).type(torch.Tensor).view(-1, 1)print(X_train_tensor.shape, X_valid_tensor.shape, y_train_tensor.shape, y_valid_tensor.shape)

以上代码通过 train_test_split 划分得到的训练集和验证集中的特征数据 X_trainX_valid 以及标签数据 y_trainy_validnumpy 数组转换为 PyTorch 的张量(tensor)类型。.type(torch.Tensor) 确保张量的数据类型为标准的 torch.Tensor 类型,.view(-1, 1) 对张量进行维度调整

class DataHandler(Dataset):def __init__(self, X_train_tensor, y_train_tensor, X_valid_tensor, y_valid_tensor):self.X_train_tensor = X_train_tensorself.y_train_tensor = y_train_tensorself.X_valid_tensor = X_valid_tensorself.y_valid_tensor = y_valid_tensordef __len__(self):return len(self.X_train_tensor)def __getitem__(self, idx):sample = self.X_train_tensor[idx]labels = self.y_train_tensor[idx]return sample, labelsdef train_loader(self):train_dataset = TensorDataset(self.X_train_tensor, self.y_train_tensor)return DataLoader(train_dataset, batch_size=32, shuffle=True)def valid_loader(self):valid_dataset = TensorDataset(self.X_valid_tensor, self.y_valid_tensor)return DataLoader(valid_dataset, batch_size=32, shuffle=False)

在上述代码中,定义了一个名为 TSCDataset 的类,它继承自 torch.utils.data.Dataset
__init__ 方法用于接收数据和标签。__len__ 方法返回数据集的长度。__getitem__ 方法根据给定的索引 idx 返回相应的数据样本和标签。

data_handler = DataHandler(X_train_tensor, y_train_tensor, X_valid_tensor, y_valid_tensor)
train_loader = data_handler.train_loader()
valid_loader = data_handler.valid_loader()

5. 构建时序模型(TSF)

5.1 构建BiGRU_Attention模型

class BiGRU_Attention(nn.Module):def __init__(self, input_dim, hidden_dim, num_layers, output_dim, num_heads):super(BiGRU_Attention, self).__init__()self.hidden_dim = hidden_dimself.num_layers = num_layersself.bigru = nn.GRU(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, bidirectional=True)self.attention = nn.MultiheadAttention(embed_dim=hidden_dim*2, num_heads=num_heads, batch_first=True)self.dropout = nn.Dropout(p=0.5)self.fc = nn.Linear(hidden_dim*2, output_dim)def forward(self, x):# x: [batch_size, seq_len, input_dim]# h0: [num_layers * num_directions, batch_size, hidden_dim]h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_dim).to(x.device)out, _ = self.bigru(x, h0)drop_gruout = self.dropout(out)# 注意力层attn_output, _ = self.attention(drop_gruout, drop_gruout, drop_gruout)drop_output = self.dropout(attn_output[:, -1, :])# 全连接层out = self.fc(drop_output)return out

5.2 定义模型、损失函数与优化器

model = BiGRU_Attention(input_dim = num_features,hidden_dim = 8,num_layers = 2, output_dim = 1, num_heads = 16)
criterion_mse = nn.MSELoss()  # 定义均方误差损失函数
criterion_mae = nn.L1Loss()  # 定义平均绝对误差损失
optimizer = torch.optim.Adam(model.parameters(), lr=1e-04) # 定义优化器

nn.L1Loss() 是 PyTorch 中的一个损失函数,用于计算模型预测值和真实值之间的平均绝对误差(Mean Absolute Error, MAE)

5.3 模型概要

# batch_size, seq_len(time_steps), input_size(in_channels)
summary(model, (32, time_steps, num_features)) 
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
BiGRU_Attention                          [32, 1]                   --
├─GRU: 1-1                               [32, 10, 16]              1,920
├─Dropout: 1-2                           [32, 10, 16]              --
├─MultiheadAttention: 1-3                [32, 10, 16]              1,088
├─Dropout: 1-4                           [32, 16]                  --
├─Linear: 1-5                            [32, 1]                   17
==========================================================================================
Total params: 3,025
Trainable params: 3,025
Non-trainable params: 0
Total mult-adds (Units.MEGABYTES): 0.61
==========================================================================================
Input size (MB): 0.01
Forward/backward pass size (MB): 0.04
Params size (MB): 0.01
Estimated Total Size (MB): 0.05
==========================================================================================

6. 模型训练与可视化

6.1 定义训练与评估函数

def train(model, iterator, optimizer):epoch_loss_mse = 0epoch_loss_mae = 0model.train()  # 确保模型处于训练模式for batch in iterator:optimizer.zero_grad()  # 清空梯度inputs, targets = batch  # 获取输入和目标值outputs = model(inputs)  # 前向传播loss_mse = criterion_mse(outputs, targets)  # 计算损失loss_mae = criterion_mae(outputs, targets)combined_loss = loss_mse + loss_mae  # 可以根据需要调整两者的权重combined_loss.backward()optimizer.step()epoch_loss_mse += loss_mse.item()  # 累计损失epoch_loss_mae += loss_mae.item()average_loss_mse = epoch_loss_mse / len(iterator)  # 计算平均损失average_loss_mae = epoch_loss_mae / len(iterator)return average_loss_mse, average_loss_mae

上述代码定义了一个名为 train 的函数,用于训练给定的模型。它接收模型、数据迭代器、优化器作为参数,并返回训练过程中的平均损失。

def evaluate(model, iterator):epoch_loss_mse = 0epoch_loss_mae = 0model.eval()  # 将模型设置为评估模式,例如关闭 Dropout 等with torch.no_grad():  # 不需要计算梯度for batch in iterator:inputs, targets = batchoutputs = model(inputs)  # 前向传播loss_mse = criterion_mse(outputs, targets)  # 计算损失loss_mae = criterion_mae(outputs, targets)epoch_loss_mse += loss_mse.item()  # 累计损失epoch_loss_mae += loss_mae.item()return epoch_loss_mse / len(iterator), epoch_loss_mae / len(iterator)

上述代码定义了一个名为 evaluate 的函数,用于评估给定模型在给定数据迭代器上的性能。它接收模型、数据迭代器作为参数,并返回评估过程中的平均损失。这个函数通常在模型训练的过程中定期被调用,以监控模型在验证集或测试集上的性能。通过评估模型的性能,可以了解模型的泛化能力和训练的进展情况。

epoch = 500
train_mselosses = []
valid_mselosses = []
train_maelosses = []
valid_maelosses = []for epoch in range(epoch):train_loss_mse, train_loss_mae = train(model, train_loader, optimizer)valid_loss_mse, valid_loss_mae = evaluate(model, valid_loader)train_mselosses.append(train_loss_mse)valid_mselosses.append(valid_loss_mse)train_maelosses.append(train_loss_mae)valid_maelosses.append(valid_loss_mae)print(f'Epoch: {epoch+1:02}, Train MSELoss: {train_loss_mse:.5f}, Train MAELoss: {train_loss_mae:.3f}, Val. MSELoss: {valid_loss_mse:.5f}, Val. MAELoss: {valid_loss_mae:.3f}')
Epoch: 01, Train MSELoss: 0.86945, Train MAELoss: 0.852, Val. MSELoss: 1.08921, Val. MAELoss: 0.997
Epoch: 02, Train MSELoss: 0.82845, Train MAELoss: 0.827, Val. MSELoss: 1.07914, Val. MAELoss: 0.992
Epoch: 03, Train MSELoss: 0.77970, Train MAELoss: 0.800, Val. MSELoss: 1.06364, Val. MAELoss: 0.984
Epoch: 04, Train MSELoss: 0.72964, Train MAELoss: 0.770, Val. MSELoss: 1.03752, Val. MAELoss: 0.971
Epoch: 05, Train MSELoss: 0.67883, Train MAELoss: 0.740, Val. MSELoss: 1.00662, Val. MAELoss: 0.954
******
Epoch: 496, Train MSELoss: 0.08508, Train MAELoss: 0.223, Val. MSELoss: 0.05806, Val. MAELoss: 0.203
Epoch: 497, Train MSELoss: 0.08262, Train MAELoss: 0.218, Val. MSELoss: 0.05554, Val. MAELoss: 0.195
Epoch: 498, Train MSELoss: 0.08714, Train MAELoss: 0.220, Val. MSELoss: 0.04519, Val. MAELoss: 0.168
Epoch: 499, Train MSELoss: 0.09767, Train MAELoss: 0.239, Val. MSELoss: 0.05352, Val. MAELoss: 0.191
Epoch: 500, Train MSELoss: 0.08566, Train MAELoss: 0.220, Val. MSELoss: 0.05005, Val. MAELoss: 0.183

6.2 绘制训练与验证损失曲线

# 绘制 MSE损失图
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(train_mselosses, label='Train MSELoss')
plt.plot(valid_mselosses, label='Validation MSELoss')
plt.xlabel('Epoch')
plt.ylabel('MSELoss')
plt.title('Train and Validation MSELoss')
plt.legend()
plt.grid(True)# 绘制 MAE损失图
plt.subplot(1, 2, 2)
plt.plot(train_maelosses, label='Train MAELoss')
plt.plot(valid_maelosses, label='Validation MAELoss')
plt.xlabel('Epoch')
plt.ylabel('MAELoss')
plt.title('Train and Validation MAELoss')
plt.legend()
plt.grid(True)plt.show()

损失曲线

7. 模型评估与可视化

7.1 构建预测函数

定义预测函数prediction 方便调用

# 定义 prediction函数
def prediction(model, iterator): all_targets = []all_predictions = []model.eval()with torch.no_grad():for batch in iterator:inputs, targets = batchpredictions = model(inputs)all_targets.extend(targets.numpy())all_predictions.extend(predictions.numpy())return all_targets, all_predictions

7.2 验证集预测

# 模型预测
targets, predictions = prediction(model, valid_loader)
denormalized_targets = scaler.inverse_transform(targets)
denormalized_predictions = scaler.inverse_transform(predictions)

targets 是经过标准化处理后的目标值数组,predictions 是经过标准化处理后的预测值数组。scalerStandardScaler() 标准化类的实例,inverse_transform 方法会将标准化后的数组还原为原始数据的尺度,即对预测值进行反标准化操作。

# Visualize the data
plt.figure(figsize=(12,6))
plt.style.use('_mpl-gallery')
plt.title('Comparison of validation set prediction results')
plt.plot(denormalized_targets, color='blue',label='Actual Value')
plt.plot(denormalized_predictions, color='orange', label='Valid Value')
plt.legend()
plt.show()

验证集预测

7.3 回归拟合图

plt.figure(figsize=(5, 5), dpi=100)
sns.regplot(x=denormalized_targets, y=denormalized_predictions, scatter=True, marker="x", color='blue',line_kws={'color': 'red'})
plt.show()

回归拟合图

7.4 评估指标

这里我们将通过调用 sklearn.metrics 模块中的 mean_absolute_error mean_absolute_percentage_error mean_squared_error root_mean_squared_error r2_score 函数来评估模型性能

mae = mean_absolute_error(targets, predictions)
print(f"MAE: {mae:.4f}")mape = mean_absolute_percentage_error(targets, predictions)
print(f"MAPE: {mape * 100:.4f}%")mse = mean_squared_error(targets, predictions)
print(f"MSE: {mse:.4f}")rmse = root_mean_squared_error(targets, predictions)
print(f"RMSE: {rmse:.4f}")r2 = r2_score(targets, predictions)
print(f"R²: {r2:.4f}")
MAE: 0.1893
MAPE: 58.1806%
MSE: 0.0519
RMSE: 0.2278: 0.9173

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/424709.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

参赛心得和思路分享:2021第二届云原生编程挑战赛2: 实现一个柔性集群调度机制

关联比赛: 2021第二届云原生编程挑战赛2&#xff1a;实现一个柔性集群调度机制 参赛心得 历时快两个月的第二届云原生编程挑战赛结束了&#xff0c;作为第一次参赛的萌新&#xff0c;拿下了28名的成绩&#xff0c;与第一名差了19万分&#xff0c;因为赛制时间太长&#xff0c…

基于python+django+vue的社区爱心养老管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于pythondjangovueMySQL的社…

103.WEB渗透测试-信息收集-FOFA语法(3)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a; 易锦网校会员专享课 上一个内容&#xff1a;102.WEB渗透测试-信息收集-FOFA语法&#xff08;2&#xff09; FOFA使用实例 组件框架 …

eureka.client.service-url.defaultZone的坑

错误的配置 eureka: client: service-url: default-zone: http://192.168.100.10:8080/eureka正确的配置 eureka: client: service-url: defaultZone: http://192.168.100.10:8080/eureka根据错误日志堆栈打断电调试 出现两个key&#xff0c;也就是defaultZone不支持snake-c…

cmd命令

常用命令 查看电脑名称&#xff1a; hostname 查看网卡信息&#xff1a; ipconfig 快速打开网络设置界面&#xff1a; control.exe netconnections 或 rundll32.exe shell32.dll,Control_RunDLL ncpa.cpld 打开防火墙设置&#xff1a; wf.msc 指定网卡设置IP地址&#…

Vue:使用v-model绑定的textarea在光标处插入指定文本

一、问题描述 使用v-model绑定的textarea如果需要改变其内容&#xff0c;一般只要改变v-model对应的变量即可&#xff0c;但如果需要在textarea的当前光标位置插入指定文本&#xff0c;那就需要操作DOM了。于是我们写了一段js&#xff1a; const insertTextAtCursor (text) …

基于TCP发送北斗消息给船舶设备终端

文章目录 引言I 自定义动态数据交换协议信息交换接口通信格式消息发送指令状态码错误信息返回指令II Netty实现TCP客户端III Java 原始API实现TCP客户端知识扩展: 基于Netty的定位数据平台通信协议定位方式移动定位设备see also引言 需求:发送北斗消息给船舶设备终端 动态信…

windows安装docker、elasticsearch、kibana、cerebro、logstash

文章目录 1. 安装docker1.1. 两大要点1.1.1. 安装启用hyper-v电脑不存在hyper-v的情况 1.1.2. 下载安装docker 2. 在docker里面安装elasticSearch&#xff0c;kibana&#xff0c;cerebro3. 安装logstash-将数据导入到elasticSearch3.1 安装logstash3.1.1 注意事项3.1.1.1. 等了…

【VSCode】VSCode Background 背景插件辅助窗口程序

前排贴上Github项目链接 GitHub窗口项目链接 这是一个基于VSCode上由shalldie上传的background扩展制作的windows窗口程序。 该程序旨在通过窗口程序尽可能的完善该扩展原有的功能。 background - shalldie 的最大优势是我目前仅在其扩展上发现了UseFront的选项&#xff0c;这…

从汇编语言到高级语言:人类计算机科学的伟大探索

从20世纪中叶第一台电子计算机的诞生&#xff0c;到如今的智能设备遍布全球&#xff0c;计算机科学的发展历程是一部充满着人类探索精神的伟大史诗。计算机语言作为人类与机器交流的桥梁&#xff0c;见证并推动了这一切。从最早的汇编语言到如今多样的高级语言&#xff0c;我们…

基于python+django+vue的鲜花商城系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于pythondjangovueMySQL的线…

Acrobat XI 安装教程

软件介绍 Adobe Acrobat 是由Adobe公司开发的一款PDF&#xff08;Portable Document Format&#xff0c;便携式文档格式&#xff09;编辑软件。借助它&#xff0c;可以以PDF格式制作和保存文档&#xff0c;以便于浏览和打印&#xff0c;同时还可以使用一些高级工具来创建、编辑…

AI论文写作测评!类似茅茅虫论文写作助手网站

在当前的学术研究和写作环境中&#xff0c;AI论文写作助手成为了许多学者和学生的重要工具。其中&#xff0c;千笔-AIPassPaper和茅茅虫论文写作助手是两款备受关注的平台。本文将对这两款工具进行详细测评&#xff0c;并推荐适合不同需求的用户使用。 千笔-AIPassPaper AI论文…

2024/9/15 408“回头看”之应用层小总结(下)

域名系统DNS: 本地域名服务器 本地域名服务器起着代理的作用&#xff0c;会将报文转发到根域名服务器、顶级域名服务器、权限域名服务器。 递归查询&#xff1a; 迭代查询&#xff1a; 文件传送协议FTP: FTP客户和FTP服务器之间使用的是tcp连接。 控制连接使用21端口&…

中国矿业大学《2023年868+2007年自动控制原理真题》 (完整版)

本文内容&#xff0c;全部选自自动化考研联盟的&#xff1a;《25届中国矿业大学868自控考研资料》的真题篇。后续会持续更新更多学校&#xff0c;更多年份的真题&#xff0c;记得关注哦~ 目录 2007年复试真题 2023年初试真题 Part1&#xff1a;完整版真题 2007年复试真题 2…

Mathtype永久激活码激活安装包以及如何关联到word、wps中

一、安装MathType 先下载MathTYpe安装包并解压&#xff0c;里面会有两个文件夹 &#xff0c;先安装1&#xff0c;按点击2进行激活 MathType安装包&#xff1a;https://pan.quark.cn/s/25337b0aad13 提取码&#xff1a;saTD MathType激活工具&#xff1a;https://pan.quark.cn/…

Android源码导入Android Studio

版权归作者所有&#xff0c;如有转发&#xff0c;请注明文章出处&#xff1a;https://cyrus-studio.github.io/blog/ 前言 需要先把 Android 源码编译一遍 然后执行下面指令就可以导入android源码了 关于 Android 源码编译可以参考这篇文章【LineageOS源码下载和编译&#xf…

解锁定位服务:Flutter应用中的高德地图定位

前言 在现代移动应用开发中&#xff0c;定位服务已成为一项基本功能&#xff0c;它使得应用能够获取用户的地理位置信息&#xff0c;为用户提供更加个性化的服务。 Flutter 作为跨平台的移动应用开发框架&#xff0c;支持集成多种服务&#xff0c;包括定位服务。 本文将介绍如…

王者荣耀改重复名(java源码)

王者荣耀改重复名 项目简介 “王者荣耀改重复名”是一个基于 Spring Boot 的应用程序&#xff0c;用于生成王者荣耀游戏中的唯一名称。通过简单的接口和前端页面&#xff0c;用户可以输入旧名称并获得一个新的、不重复的名称。 功能特点 生成新名称&#xff1a;提供一个接口…

Windows本地制作java证书(与jeecgboot配置本地证书ssl问题)

1&#xff1a;JDK生成自签证书SSL,首先以管理员身份运行CMD窗口&#xff0c;执行命令 keytool -genkey -alias testhttps -keyalg RSA -keysize 2048 -validity 36500 -keystore "F:/ssl/testhttps.keystore"F:\ssl>keytool -genkey -alias testhttps -keyalg R…