【C++11】可变参数模板

【C++11】可变参数模板

一、可变参数模板概念以及定义方式

​ 在C++11之前,类模板和函数模板只能含有固定数量的模板参数,c++11增加了可变模板参数特性:允许模板定义中包含0到任意个模板参数。声明可变参数模板时,需要在typename或class后面加上省略号“…”。

//Args是一个模板参数包,args是一个函数形参参数包
//声明一个参数包Args... args,这个参数包中可以包含0到任意个模板参数。
//模板参数包Args和函数参数包args的名字可以任意指定,并不是说必须叫做Args和args
template<class... Args>
void ShowList(Args... args)
{}

​ 现在调用ShowList函数时就可以传入任意多个参数了,并且这些参数可以是不同类型的。比如:

template<class ...Args>
void ShowList(Args... args)
{}
int main() {ShowList(1);ShowList(1, 'A');ShowList(1, 'A', string("sort"));return 0;
}

​ 我们可以在函数模板中通过sizeof计算参数包中参数的个数。比如:

template<class ...Args>
void ShowList(Args... args){cout << sizeof...(args) << endl;//获取参数包中参数的个数
}

image-20240916144446848

二、参数包的展开

​ 上面的参数args前面有省略号,所以它就是一个可变模板参数,我们把带省略号的参数称为“参数包,它里面了0到N(N>=0)个模板参数。我们无法直接获取参数包args中的每个参数的,只能通过展开参数包的方法来获取参数包中的每个参数,这是使用可变模板参数的一个主要特点,也是最大的难点,即如何展开可变模板参数。由于语法不支持使用args[i]这样方式获取可变参数,所以我们得用一些奇招来一一获取参数包的值。

1.递归函数方式展开参数包

​ 递归展开参数包的方式如下:

  • 给函数模板增加一个模板参数,这样就可以从接收到的参数包中分离除一个参数出来。
  • 在函数模板中递归调用该函数模板,调用时传入剩下的参数包。
  • 如此递归下去,每次分离出参数包中的一个参数,直到参数包中的所有参数都被取出来
  • 还需要给递归终止函数。
//递归终止函数
//当递归调用ShowList函数模板时,如果传入的参数包中参数的个数为0,那么就会匹配到这个无参的递归终止函数,这样就结束了递归
template<class T>
void ShowList(const T& t) {cout << t << endl;
}
//展开函数
template<class T,class ...Args>
void ShowList(T value,Args... args){cout << value << " ";ShowList(args...);
}
int main() {ShowList(1);ShowList(1, 'A');ShowList(1, 'A', string("sort"));return 0;
}

image-20240916145528517

2.逗号表达式展开参数包

​ 我们知道逗号表达式会按顺序执行逗号前面的表达式。
​ (PrintArg(args),0),也是按照这个执行顺序,先执行PrintArg(args),再得到逗号表达式的结果0。同时还用到了C++11的另外一个特性 —— 初始化列表,通过初始化列表来初始化一个变长数组,{(PrintArg(args),0) … }将会展开成((PrintArg(arg1),0),(PrintArg(arg2),0),(PrintArg(args),0),etc…),最终会创建一个元素值都为0的数组 int arr[sizeof…(Args)]。
​ 由于是逗号表达式,在创建数组的过程中会先执行逗号表达式前面的部分printarg(args) 打印出参数,也就是说在构造int数组的过程中就将参数包展开了,这个数组的目的纯粹是为了在数组构造的过程展开参数包。

template <class T>
void PrintArg(T t) {cout << t << " ";
}
//展开函数
template <class ...Args>
void ShowList(Args... args) {int arr[] = { (PrintArg(args),0)... };cout << endl;
}
int main() {ShowList(1);ShowList(1, 'A');ShowList(1, 'A', string("sort"));return 0;
}

image-20240916150956840

三、STL容器中的emplace相关接口函数

​ C++11标准给STL中的容器增加emplace版本的插入接口,比如vector容器的push_back和insert函数,都增加了对应的emplace_back和emplace函数。如下:
image-20240916151809639

​ 我们来看一下他们的声明

image-20240916151836714

​ push_back在C++之后除了原来的左值版本外,还提供了右值版本,如果push_back的是左值那么就调用左值版本,反之就是右值引用的版本;但是只能支持单个元素的插入。
​ emplace_back和emplace 与以前的接口的本质的区别就是他们采用了可变参数模板,这也一来,他就可以支持多个元素的插入,代码如下:

int main() {/********************emplace_back***************************/vector<int> v1;vector<int> v2;v1.push_back(1);v1.push_back(2);v1.push_back(3);v1.push_back(4);v1.push_back(5);//v1.push_back({1,2,3,4,5}); // 不可以v2.emplace_back(1, 2, 3, 4, 5);/**********************emplace*************************/v1.insert(v1.begin(), 9);v1.insert(v1.begin(), 8);v1.insert(v1.begin(), 7);v1.insert(v1.begin(), 6);//v1.insert(v1.begin(), 9, 8, 7, 6); // 不可以v2.emplace(v2.begin(), 9, 8, 7, 6);return 0;
}

​ 由于emplace系列接口的可变参数的类型都是万能引用,因此既可以接收右值对象,还可以接收参数包。

  • 如果调用emplace系列接口时传入的是左值对象,那么首先需要先在此之前调用构造函数实例化出一个左值对象,最终在使用定位new表达式调用构造函数对空间进行初始化,会匹配到拷贝构造函数。
  • 如果调用emplace系列接口时传入的是右值对象,那么就需要在此之前调用构造函数实例化出一个右值对象,最终在使用定位new表达式调用构造函数对空间进行初始化时,就会匹配到移动拷贝函数。
  • 如果调用emplace系列接口时传入的是参数包,那就可以直接调用函数进行插入,并且最终在使用定位new表达式调用构造函数对空间进行初始化时,匹配到的是构造函数。

总结一下:

  • 传入左值对象,需要调用构造函数+拷贝构造函数
  • 传入右值对象,需要调用拷贝构造+移动构造函数
  • 传入参数包,只需要调用构造函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/425132.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据在内存中的存储方式

前言&#xff1a;已经好久没更新了&#xff0c;开学之后学习编程的时间少了很多。因此&#xff0c;已经好几个礼拜都没有写文章了。 在讲解操作符的时候&#xff0c;我们就已经学习过了整数在内存中的存储方式。若有不懂的伙伴可以前往操作符详解进行学习。今天我们主要来学习…

[数据集][目标检测]智慧交通铁路人员危险行为躺站坐检测数据集VOC+YOLO格式3766张4类别

图片数量(jpg文件个数)&#xff1a;3766 标注数量(xml文件个数)&#xff1a;3766 标注数量(txt文件个数)&#xff1a;3766 标注类别数&#xff1a;4 标注类别名称:["sitting","sleeping","standing","track"] 每个类别标注的框数&…

NC 矩阵最长递增路径

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站&#xff0c;这篇文章男女通用&#xff0c;看懂了就去分享给你的码吧。 描述 给定一个 n 行…

<Linux> 进程间通信

目录 一、进程间通信介绍 1. 进程间通信概念 2. 进程间通信目的 3. 进程间通信的本质 4. 进程间通信发展 5. 进程间通信分类 管道&#xff08;文件缓冲区&#xff09; System V IPC POSIX IPC 二、管道 1. 匿名管道 1.1 匿名管道原理 1.2 pipe系统调用 1.3 匿名管道的使用 1.4…

Java项目基于docker 部署配置

linux新建文件夹 data cd datatouch Dockerfilesudo vim Dockerfile# 使用一个基础的 Java 镜像&#xff08;根据自己项目中使用的是什么jdk版本设置&#xff0c;用于拉取执行jar包的jdk环境&#xff09; FROM openjdk:8# 指定工作目录 VOLUME /data# 复制应用程序的 JAR 文件…

超详解——​深入理解Python中的位运算与常用内置函数/模块——基础篇

目录 ​编辑 1.位运算 2.常用内置函数/模块 math模块 random模块 decimal模块 常用内置函数 3.深入理解和应用 位运算的实际应用 1.权限管理 2.位图 3.图像处理 2.math模块的高级应用 统计计算 几何计算 总结 1.位运算 位运算是对整数在内存中的二进制表示进行…

nginx负载均衡(轮询与权重)

文章目录 1. nginx的介绍2. nginx使用场景3. nginx在windows的下载与安装4. nginx的简单使用5. nginx进行轮询测试6. nginx进行权重测试7. 总结 1. nginx的介绍 Nginx&#xff08;engine x&#xff09;是一个高性能的HTTP和反向代理web服务器&#xff0c;同时也是一个开源的、…

CSS 响应式设计(补充)——WEB开发系列36

随着移动设备的普及&#xff0c;网页设计的焦点逐渐转向了响应式设计。响应式设计不仅要求网页在各种屏幕尺寸上良好展示&#xff0c;还要适应不同设备的特性。 一、响应式设计之前的灵活布局 在响应式设计流行之前&#xff0c;网页布局通常是固定的或流动的。固定布局使用固定…

MySQL练手题--体育馆的人流量(困难)

一、准备工作 Create table If Not Exists Stadium (id int, visit_date DATE NULL, people int); Truncate table Stadium; insert into Stadium (id, visit_date, people) values (1, 2017-01-01, 10); insert into Stadium (id, visit_date, people) values (2, 2017-01-02…

MouseArea元素

常用信号 onClicked&#xff0c;鼠标点击onPressed&#xff0c;鼠标按下onReleased&#xff0c;鼠标释放 import QtQuickWindow {width: 640height: 480visible: truetitle: qsTr("Hello World")Rectangle{id:rectwidth: 100height: 100color:"red"MouseA…

视频监控平台是如何运作的?EasyCVR视频汇聚平台的高效策略与实践

随着科技的飞速发展&#xff0c;视频监控平台在社会安全、企业管理、智慧城市构建等领域发挥着越来越重要的作用。一个高效的视频监控平台&#xff0c;不仅依赖于先进的硬件设备&#xff0c;更离不开强大的视频处理技术作为支撑。这些平台集成了多种先进的视频技术&#xff0c;…

Redis集群_cluster

cluster集群 cluster翻译就是集群&#xff0c;所以cluster集群也叫做redis集群相比于哨兵模式&#xff0c;cluster集群能支持扩容&#xff0c;并且无需额外的节点来监控状态&#xff0c;所以使用这种模式集群的系统会用的更多些redis cluster采用的是去中心化网络拓扑架构&…

git push : RPC failed; HTTP 400 curl 22 The requested URL returned error: 400

git push 出现RPC failed; HTTP 400 curl 22 The requested URL returned error: 400 问题 git push Enumerating objects: 11, done. Counting objects: 100% (11/11), done. Delta compression using up to 8 threads Compressing objects: 100% (10/10), done. error: RPC …

漫画元素检测系统源码分享

漫画元素检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vis…

【开源分享】vsomeip 安装、编译、运行步骤笔记

文章目录 1. 摘要2. 安装、编译2.1 开发环境说明2.2 安装依赖2.3 获取代码2.4 编译代码2.5 安装 3. 测试验证参考 1. 摘要 本文主要描述 vsomeip 的安装、编译与运行步骤。下载源码&#xff0c;安装必要依赖&#xff0c;如Boost和CMake。通过CMake配置编译 vsomeip 库&#xf…

【C++】unordered系列

前言&#xff1a; 在C11及以后的标准中&#xff0c;unordered容器是标准模板库&#xff08;STL&#xff09;的一部分&#xff0c;提供了高效的数据结构选项&#xff0c;适用于需要快速查找和插入操作的场景。 unordered通常与关联容器一起使用&#xff0c;特别是unordered_map和…

详解HTTP/HTTPS协议

HTTP HTTP协议全名为超文本传输协议。HTTP协议是应用层协议&#xff0c;其传输层协议采用TCP协议。 请求—响应模型 HTTP协议采用请求-响应模型&#xff0c;通常由客户端发起请求由服务端完成响应。资源存储在服务端&#xff0c;客户端通过请求服务端获取资源。 认识URL 当…

01,大数据总结,zookeeper

1 &#xff0c;zookeeper &#xff1a;概述 1.1&#xff0c;zookeeper&#xff1a;作用 1 &#xff0c;大数据领域 &#xff1a;存储配置数据   例如&#xff1a;hadoop 的 ha 配置信息&#xff0c;hbase 的配置信息&#xff0c;都存储在 zookeeper 2 &#xff0c;应用领…

TDengine 与飞腾腾锐 D2000 完成兼容互认证,推动国产软硬件深度融合

在国家信息安全和自主可控技术日益受到重视的背景下&#xff0c;国产软硬件的发展已成为推动数字经济的重要力量。随着全球科技竞争加剧&#xff0c;企业在选择技术解决方案时&#xff0c;越来越倾向于采用国产产品以降低对外部技术的依赖。这一趋势不仅是为了确保数据安全与隐…

信息安全数学基础(14)欧拉函数

前言 在信息安全数学基础中&#xff0c;欧拉函数&#xff08;Eulers Totient Function&#xff09;是一个非常重要的概念&#xff0c;它与模运算、剩余类、简化剩余系以及密码学中的许多应用紧密相关。欧拉函数用符号 φ(n) 表示&#xff0c;其中 n 是一个正整数。 一、定义 欧…