Python(TensorFlow和PyTorch)及C++注意力网络导图

🎯要点

  1. 谱图神经网络
  2. 计算注意力分数
  3. 对比图神经网络、卷积网络和图注意力网络
  4. 药物靶标建模学习和预测相互作用
  5. 腹侧和背侧皮质下结构
  6. 手写字体字符序列文本识别
  7. 组织病理学图像分析
  8. 长短期记忆财务模式预测相关性
  9. 生物医学图像特征学习和迭代纠正
    在这里插入图片描述

Python注意力机制

对于图卷积网络,图卷积运算产生邻居节点特征的归一化和。
h i ( l + 1 ) = σ ( ∑ j ∈ N ( i ) 1 c i j W ( l ) h j ( l ) ) h_i^{(l+1)}=\sigma\left(\sum_{j \in N (i)} \frac{1}{c_{i j}} W^{(l)} h_j^{(l)}\right) hi(l+1)=σ jN(i)cij1W(l)hj(l)
其中 N ( i ) N (i) N(i) 是其一跳邻居的集合(要在集合中包含 v i v_i vi,只需向每个节点添加一个自循环), c i j = ∣ N ( i ) ∣ ∣ N ( j ) ∣ c_{i j}=\sqrt{| N (i)|} \sqrt{| N (j)|} cij=N(i) N(j) 是基于图结构的归一化常数, σ \sigma σ 是激活函数(图卷积网络使用 ReLU), W ( l ) W^{(l)} W(l) 是节点级特征的共享权重矩阵转变。

图注意力网络引入了注意力机制来替代静态归一化卷积运算。下面是根据层 l l l 的嵌入计算层 l + 1 l+1 l+1 的节点嵌入 h i ( l + 1 ) h_i^{(l+1)} hi(l+1) 的方程。
在这里插入图片描述
z i ( l ) = W ( l ) h i ( l ) ( 1 ) z_i^{(l)}=W^{(l)} h_i^{(l)}\qquad(1) zi(l)=W(l)hi(l)(1)

e i j ( l ) = LeakyReLU ⁡ ( a ⃗ ( l ) T ( z i ( l ) ∥ z j ( l ) ) ) ( 2 ) e_{i j}^{(l)}=\operatorname{LeakyReLU}\left(\vec{a}^{(l)^T}\left(z_i^{(l)} \| z_j^{(l)}\right)\right)\qquad(2) eij(l)=LeakyReLU(a (l)T(zi(l)zj(l)))(2)

α i j ( l ) = exp ⁡ ( e i j ( l ) ) ∑ k ∈ N ( i ) exp ⁡ ( e i k ( l ) ) ( 3 ) \alpha_{i j}^{(l)}=\frac{\exp \left(e_{i j}^{(l)}\right)}{\sum_{k \in N (i)} \exp \left(e_{i k}^{(l)}\right)}\qquad(3) αij(l)=kN(i)exp(eik(l))exp(eij(l))(3)

h i ( l + 1 ) = σ ( ∑ j ∈ N ( i ) α i j ( l ) z j ( l ) ) ( 4 ) h_i^{(l+1)}=\sigma\left(\sum_{j \in N (i)} \alpha_{i j}^{(l)} z_j^{(l)}\right)\qquad(4) hi(l+1)=σ jN(i)αij(l)zj(l) (4)

方程(1)是下层嵌入 h i ( l ) h_i^{(l)} hi(l)的线性变换, W ( l ) W^{(l)} W(l)是其可学习的权重矩阵。方程(2)计算两个邻居之间的成对非标准化注意力得分。

方程 1:

def edge_attention(self, edges):z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1)a = self.attn_fc(z2)return {'e' : F.leaky_relu(a)}

方程 2:

def edge_attention(self, edges):z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1)a = self.attn_fc(z2)return {'e' : F.leaky_relu(a)}

在这里,它首先连接两个节点的 z z z 嵌入,其中 ||表示串联,然后取它和可学习权重向量 a ⃗ ( l ) \vec{a}^{(l)} a (l) 的点积,最后应用 LeakyReLU。这种形式的注意力通常称为附加注意力,与 Transformer 模型中的点积注意力形成对比。方程(3)应用 softmax 来标准化每个节点传入边上的注意力分数。方程(4)与图卷积网络类似。来自邻居的嵌入被聚合在一起,并按注意力分数进行缩放。

方程 3 和 4:

def reduce_func(self, nodes):alpha = F.softmax(nodes.mailbox['e'], dim=1)h = torch.sum(alpha * nodes.mailbox['z'], dim=1)return {'h' : h}

图注意力网络引入多头注意力来丰富模型容量并稳定学习过程。每个注意力头都有自己的参数,它们的输出可以通过两种方式合并:
h i ( l + 1 ) = ∥ k = 1 K σ ( ∑ j ∈ N ( i ) α i j k W k h j ( l ) ) h_i^{(l+1)}=\|_{k=1}^K \sigma\left(\sum_{j \in N (i)} \alpha_{i j}^k W^k h_j^{(l)}\right) hi(l+1)=k=1Kσ jN(i)αijkWkhj(l)

h i ( l + 1 ) = σ ( 1 K ∑ k = 1 K ∑ j ∈ N ( i ) α i j k W k h j ( l ) ) h_i^{(l+1)}=\sigma\left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in N (i)} \alpha_{i j}^k W^k h_j^{(l)}\right) hi(l+1)=σ K1k=1KjN(i)αijkWkhj(l)

class MultiHeadLayer(nn.Module):def __init__(self, g, in_dim, out_dim, num_heads, merge='cat'):super(MultiHeadLayer, self).__init__()self.heads = nn.ModuleList()for i in range(num_heads):self.heads.append(Layer(g, in_dim, out_dim))self.merge = mergedef forward(self, h):head_outs = [attn_head(h) for attn_head in self.heads]if self.merge == 'cat':return torch.cat(head_outs, dim=1)else:return torch.mean(torch.stack(head_outs))

定义两层注意力模型

class TAM(nn.Module):def __init__(self, g, in_dim, hidden_dim, out_dim, num_heads):super(TAM, self).__init__()self.layer1 = MultiHeadLayer(g, in_dim, hidden_dim, num_heads)self.layer2 = MultiHeadLayer(g, hidden_dim * num_heads, out_dim, 1)def forward(self, h):h = self.layer1(h)h = F.elu(h)h = self.layer2(h)return h

加载数据集

from xl import Graph
from xl.data import citation_graph as citegrh
import networkx as nxdef load_cora_data():data = citegrh.load_cora()features = torch.FloatTensor(data.features)labels = torch.LongTensor(data.labels)mask = torch.BoolTensor(data.train_mask)g = Graph(data.graph)return g, features, labels, mask

训练

import time
import numpy as npg, features, labels, mask = load_cora_data()net = TAM(g,in_dim=features.size()[1],hidden_dim=8,out_dim=7,num_heads=2)optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)dur = []
for epoch in range(30):if epoch >= 3:t0 = time.time()logits = net(features)logp = F.log_softmax(logits, 1)loss = F.nll_loss(logp[mask], labels[mask])optimizer.zero_grad()loss.backward()optimizer.step()if epoch >= 3:dur.append(time.time() - t0)print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f}".format(epoch, loss.item(), np.mean(dur)))

👉更新:亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/425806.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AE VM5000 Platform VarioMatch Match Network 手侧

AE VM5000 Platform VarioMatch Match Network 手侧

算法入门-贪心1

第八部分:贪心 409.最长回文串(简单) 给定一个包含大写字母和小写字母的字符串 s ,返回通过这些字母构造成的最长的回文串 的长度。 在构造过程中,请注意 区分大小写 。比如 "Aa" 不能当做一个回文字符串…

Understanding the model of openAI 5 (1024 unit LSTM reinforcement learning)

题意:理解 OpenAI 5(1024 单元 LSTM 强化学习)的模型 问题背景: I recently came across openAI 5. I was curious to see how their model is built and understand it. I read in wikipedia that it "contains a single l…

从0-1 用AI做一个赚钱的小红书账号(不是广告不是广告)

大家好,我是胡广!是不是被标题吸引过来的呢?是不是觉得自己天赋异禀,肯定是那万中无一的赚钱天才。哈哈哈,我告诉你,你我皆是牛马,不要老想着突然就成功了,一夜暴富了,瞬…

【SQL】百题计划:SQL对于空值的比较判断。

[SQL]百题计划 方法&#xff1a; 使用 <> (!) 和 IS NULL [Accepted] 想法 有的人也许会非常直观地想到如下解法。 SELECT name FROM customer WHERE referee_Id <> 2;然而&#xff0c;这个查询只会返回一个结果&#xff1a;Zach&#xff0c;尽管事实上有 4 个…

React js Router 路由 2, (把写过的几个 app 组合起来)

完整的项目&#xff0c;我已经上传了&#xff0c;资源链接. 起因&#xff0c; 目的: 每次都是新建一个 react 项目&#xff0c;有点繁琐。 刚刚学了路由&#xff0c;不如写一个 大一点的 app &#xff0c;把前面写过的几个 app, 都包含进去。 这部分感觉就像是&#xff0c; …

linux网络编程——UDP编程

写在前边 本文是B站up主韦东山的4_8-3.UDP编程示例_哔哩哔哩_bilibili视频的笔记&#xff0c;其中有些部分博主也没有理解&#xff0c;希望各位辩证的看。 UDP协议简介 UDP 是一个简单的面向数据报的运输层协议&#xff0c;在网络中用于处理数据包&#xff0c;是一种无连接的…

借助大模型将文档转换为视频

利用传统手段将文档内容转换为视频&#xff0c;比如根据文档内容录制一个视频&#xff0c;不仅需要投入大量的时间和精力&#xff0c;而且往往需要具备专业的视频编辑技能。使用大模型技术可以更加有效且智能化地解决上述问题。本实践方案旨在依托大语言模型&#xff08;Large …

JDBC导图

思维歹徒 一、使用步骤 二、SQL注入 三、数据库查询&#xff08;查询&#xff09; 四、数据库写入&#xff08;增删改&#xff09; 五、Date日期对象处理 六、连接池使用 创建连接是从连接池拿&#xff0c;释放连接是放回连接池 七、事务和批次插入 八、Apache Commons DBUtil…

Village Exteriors Kit 中世纪乡村房屋场景模型

此模块化工具包就是你一直在寻找的适合建造所有中世纪幻想村庄和城市建筑所需要的工具包。 皇家园区 - 村庄外饰套件的模型和纹理插件资源包 酒馆和客栈、魔法商店、市政大厅、公会大厅、布莱克史密斯锻造厂、百货商店、珠宝商店、药店、草药师、银行、铠甲、弗莱切、马厩、桌…

这个时代唯一“不变“的又是{变}

这个时代唯一不变的就是“变”&#xff0c;所以每个人都得有规划意识&#xff0c;首先要对自己的价值有清晰的认知&#xff0c;你核心卖点是什么。第二&#xff0c;你取得的成绩是通过平台成就的还是通过自身努力取得的&#xff0c;很多人在一家平台待久了之后&#xff0c;身上…

2022高教社杯全国大学生数学建模竞赛C题 问题一(1) Python代码

目录 问题 11.1 对这些玻璃文物的表面风化与其玻璃类型、纹饰和颜色的关系进行分析数据探索 -- 单个分类变量的绘图树形图条形图扇形图雷达图 Cramer’s V 相关分析统计检验列联表分析卡方检验Fisher检验 绘图堆积条形图分组条形图 分类模型Logistic回归随机森林 import matplo…

在STM32工程中使用Mavlink与飞控通信

本文讲述如何在STM32工程中使用Mavlink协议与飞控通信&#xff0c;特别适合自制飞控外设模块的项目。 需求来源&#xff1a; 1、增稳云台里的STM32单片机需要通过串口接收飞控传来的云台俯仰、横滚控制指令和相机拍照控制指令&#xff1b; 2、自制的有害气体采集器需要接收飞…

[Python可视化]数据可视化在医疗领域应用:提高诊断准确性和治疗效果

随着医疗数据的增长&#xff0c;如何从庞大的数据集中快速提取出有用的信息&#xff0c;成为了医疗研究和实践中的一大挑战。数据可视化在这一过程中扮演了至关重要的角色&#xff0c;它能够通过图形的方式直观展现复杂的数据关系&#xff0c;从而帮助医生和研究人员做出更好的…

专题四_位运算( >> , << , , | , ^ )_算法详细总结

目录 位运算 常见位运算总结 1.基础位运算 2.给一个数 n ,确定它的二进制表示中的第 x 位是 0 还是 1 3.运算符的优先级 4.将一个数 n 的二进制表示的第 x 位修改成 1 5.将一个数n的二进制表示的第x位修改成0 6.位图的思想 7.提取一个数&#xff08;n&#xff09;二进…

【嘉立创EDA】画PCB板中为什么要两面铺铜为GND,不能一面GND一面VCC吗?

在新手画板子铺铜时&#xff0c;经常会铺一面GND一面VCC。但一般情况下我们不会这样铺铜。下面将详细分析为什么要两面铺铜为GND&#xff0c;而不是一面GND一面VCC的原因&#xff1a; 提高散热能力 金属导热性&#xff1a;金属具有良好的导热性&#xff0c;铺铜可以有效分散PCB…

引用和指针的区别(面试概念性题型)

个人主页&#xff1a;Jason_from_China-CSDN博客 所属栏目&#xff1a;C系统性学习_Jason_from_China的博客-CSDN博客 所属栏目&#xff1a;C知识点的补充_Jason_from_China的博客-CSDN博客 概念概述 内存占用&#xff1a; 引用&#xff1a;引用一个变量时&#xff0c;实际上并…

2024 年浙江省网络安全行业网络安全运维工程师项目 职业技能竞赛网络安全运维工程师(决赛样题)

2024年浙江省网络安全行业网络安全运维工程师项目 职业技能竞赛网络安全运维工程师&#xff08;决赛样题&#xff09; 应急响应&#xff1a;1 通过流量分析&#xff0c;找到攻击者的 IP 地址2 找到攻击者下载的恶意文件的 32 位小写 md5 值3 找到攻击者登录后台的 URI4 找到攻击…

攻防世界--->hackme

学习笔记。 下载 查壳。 64ida打开。 进入main&#xff1a; 跟进&#xff1a; 这是密文 咋一看这程序感觉很复杂&#xff0c;很复杂&#xff1a; 脚本&#xff1a; #include <stdio.h> #include <string.h> #include <stdlib.h>int main() {unsigned char …

【数据结构】线段树复杂应用

1.线段树离散化 逆序对 1.1逆序对 题目描述 猫猫 TOM 和小老鼠 JERRY 最近又较量上了&#xff0c;但是毕竟都是成年人&#xff0c;他们已经不喜欢再玩那种你追我赶的游戏&#xff0c;现在他们喜欢玩统计。 最近&#xff0c;TOM 老猫查阅到一个人类称之为“逆序对”的东西&…