【操作系统】二、进程管理:4.死锁(银行家算法、系统安全状态、静态分配策略、资源有序分配法)

五、死锁

文章目录

  • 五、死锁
    • 1.产生
      • 1.1产生情况
      • 1.2产生的==4个必要条件==
    • 2.处理方式
      • 2.1预防死锁
        • 2.1.1破坏互斥条件
        • 2.1.2破坏请求和保持条件
        • 2.1.3破坏不可抢占条件
        • 2.1.4破坏循环等待条件
      • 2.2避免死锁
        • 2.2.1系统安全状态
        • ❗2.2.2银行家算法
      • 2.3检测死锁
      • 2.4解除死锁

死锁资源在对方手中,它要的资源在我手中,谁也不给谁至少有两个或以上的进程同时发“死锁”

【规范】在并发环境下(多道程序环境中),各进程因竞争有限的资源而造成的一种互相等待对方手里的资源,导致各进程都阻塞,都无法向前推进的现象,就是“死锁”。发生死锁后若无外力干涉,这些进程都将无法向前推进。

饥饿长期得不到想要的资源,这个资源不一定在哪里。可能是只有一个进程“饥饿”。

【规范】由于长期得不到想要的资源,某进程无法向前推进的现象。比如:在短进程优先(SPF)算法中,若有源源不断的短进程到来,则长进程将一直得不到处理机,从而发生长进程“饥饿”。

死循环:某进程执行过程中一直跳不出某个循环的现象。有时是因为程序逻辑bug导致的,有时是程序员故意设计的。

死锁、饥饿是操作系统分配资源不合理的问题,死循环是程序员代码逻辑错误的问题。

1.产生

1.1产生情况

对不可剥夺资源的不合理分配就可能导致死锁。

  • 独占资源分配不当

  • 竞争不可抢占资源

各进程对不可剥夺的资源(如打印机)的竞争可能引起死锁,对可剥夺的资源(CPU)的竞争是不会引起死锁的。

  • 竞争可消耗资源

  • 进程推进顺序不当

请求和释放资源的顺序不当,也同样会导致死锁。

例如:并发执行的进程P1、P2分别申请并占有了资源R1、R2,之后进程P1又紧接着申请资源R2,而进程P2又申请资源R1,两者会因为申请的资源被对方占有而阻塞,从而发生死锁。

  • 信号量使用不当

例如:生产者-消费者问题中,如果实现互斥的P操作在实现同步的P操作之前,就有可能导致死锁。(可以把互斥信号量、同步信号量也看做是一种抽象的系统资源)。

1.2产生的4个必要条件

产生死锁必须同时满足一下四个条件,只要其中任一条件不成立,死锁就不会发生。

  1. 互斥条件:只有对必须互斥使用的资源的争抢才会导致死锁(如哲学家的筷子、打印机设备)。像内存、扬声器这样可以同时让多个进程使用的资源是不会导致死锁的(因为进程不用阻塞等待这种资源)。
  2. 请求和保持条件进程已经保持了至少一个资源,但又提出了新的资源请求,而该资源又被其他进程占有,此时请求进程被阻塞,但又对自己己有的资源保持不放。
  3. 不可抢占条件(不可剥夺):进程所获得的资源在未使用完之前,不能由其他进程强行夺走,只能主动释放。
  4. 循环等待条件:存在一种进程资源的循环等待链,链中的每一个进程已获得的资源同时被下一个进程所请求。

【注意】发生死锁时一定有循环等待,但是发生循环等待时未必死锁(循环等待是死锁的必要不充分条件)。

2.处理方式

  • 不允许发生死锁
    • 静态策略:预防死锁:破坏死锁产生的四个必要条件中的一个或几个。
    • 动态策略:避免死锁:用某种方法防止系统进入不安全状态,从而避免死锁(银行家算法)。
  • 允许发生死锁
    • 检测死锁
    • 解除死锁

这4种处理方式中,从严到宽,即并发性从小到大排序:

预防 < 避免(银行家)< 检测(死锁定理、资源分配图)< 解除

2.1预防死锁

破坏四个条件就可以预防死锁。所以有4个策略:

2.1.1破坏互斥条件

SPOOLing技术

操作系统可以采用SPOOLing技术把独占设备在逻辑上改造成共享设备

例如:用SPOOLing技术将打印机改造为共享设备。使用了SPOOLing技术,在进程和设备之间,添加一个中转站可以直接接受请求,然后自己再后续操作打印机。那么在各进程看来,自己对打印机资源的使用请求立即就被接收处理了,不需要再阻塞等待。

缺点:并不是所有的资源都可以改造成可共享使用的资源。并且为了系统安全,很多地方还必须保护这种互斥性。因此,很多时候都无法破坏互斥条件。

2.1.2破坏请求和保持条件

一次性分配策略(静态分配策略):一次性申请其在运行过程中的所需的所有资源,在它的资源未满足前,不让它投入运行。

该策略实现起来简单,但也有明显的缺点:

  1. 有些资源可能只需要用很短的时间,因此如果进程的整个运行期间都一直保持着所有资源,就会造成严重的资源浪费,资源利用率极低
  2. 资源被释放就会马上被分配,那么某一个进程需要的两种资源不能同时获得,就需要一直等待,可能导致饥饿
2.1.3破坏不可抢占条件

可剥夺资源:当它请求不到新资源的时候,就要放弃所有的资源。

方案一:当某个进程请求新的资源得不到满足时,它必须立即释放保持的所有资源,待以后需要时再重新申请。也就是说,即使某些资源尚未使用完,也需要主动释放,从而破坏了不可剥夺条件。

方案二:当某个进程需要的资源被其他进程所占有的时候,可以由操作系统协助,将想要的资源强行剥夺。这种方式一般需要考虑各进程的优先级(比如:剥夺调度方式,就是将处理机资源强行剥夺给优先级更高的进程使用)

缺点:

  1. 实现起来比较复杂;
  2. 释放已获得的资源可能造成前一阶段工作的失效。因此这种方法一般只适用于易保存和恢复状态的资源,如CPU;
  3. 反复地申请和释放资源会增加系统开销,降低系统吞吐量
  4. 若采用方案一,意味着只要暂时得不到某个资源,之前获得的那些资源就都需要放弃,以后再重新申请。如果一直发生这样的情况,就会导致进程饥饿
2.1.4破坏循环等待条件

资源有序分配法(顺序资源分配法)限制用户申请资源的顺序。系统给每类资源一个编号,每一个进程按编号递增的顺序请求资源,同类资源(即编号相同的资源)一次申请完,释放则相反。

原理分析:一个进程只有已占有小编号的资源时,才有资格申请更大编号的资源。按此规则,已持有大编号资源的进程不可能逆向地回来申请小编号的资源,从而就不会产生“循环等待链”,循环等待的现象。所以在任何一个时刻,总有一个进程拥有的资源编号是最大的,那这个进程申请之后的资源必然畅通无阻。因此,不可能出现所有进程都阻塞的死锁现象。

缺点:

  1. 不方便增加新的设备,因为可能需要重新分配所有的编号;
  2. 进程实际使用资源的顺序可能和编号递增顺序不一致,会导致资源浪费;
  3. 必须按规定次序申请资源,用户编程麻烦。

2.2避免死锁

2.2.1系统安全状态

所谓安全序列,就是指如果系统按照这种序列分配资源,则每个进程都能顺利完成。只要能找出一个安全序列,系统就是安全状态。当然,安全序列可能有多个

如果分配了资源之后,系统中找不出任何一个安全序列,系统就进入了不安全状态。这就意味着之后可能所有进程都无法顺利的执行下去。当然,如果有进程提前归还了一些资源,那系统也有可能重新回到安全状态,不过我们在分配资源之前总是要考虑到最坏的情况。

如果系统处于安全状态,就一定不会发生死锁。如果系统进入不安全状态,就可能发生死锁(处于不安全状态未必就是发生了死锁,但发生死锁时一定是在不安全状态)。

因此可以在资源分配之前预先判断这次分配是否会导致系统进入不安全状态,以此决定是否答应资源分配请求。这也是“银行家算法”的核心思想。

❗2.2.2银行家算法

核心思想:在进程提出资源申请时,先预判此次分配是否会导致系统进入不安全状态。如果会进入不安全状态,就暂时不答应这次请求,让该进程先阻塞等待。

【2019年408真题】银行家算法是一种死锁避免算法,不能判断系统是否处于死锁。

在这里插入图片描述

2.3检测死锁

死锁定理:如果某时刻系统的资源分配图是不可完全简化的,那么此时系统死锁。

  1. 某种数据结构来保存资源的请求和分配信息;
  2. 提供一种算法,利用上述信息来检测系统是否已进入死锁状态。

在这里插入图片描述

如图所示,R1有3个分配边,意味着R1的资源3个已经全部分配出去了,那么此时的P2的请求资源就不能被满足了;但是P1的请求资源可以被满足,因为R2还剩1个资源,P1进程可以执行。P1完成后就会把分配的资源还回去,那么就消除分配边,那么P2的请求此时就可以被满足了。所以不死锁。

  • 如果系统中剩余的可用资源数足够满足进程的需求,那么这个进程暂时是不会阻塞的,可以顺利地执行下去。
  • 如果这个进程执行结束了把资源归还系统,就可能使某些正在等待资源的进程被激活,并顺利地执行下去。

按上述过程分析,最终能消除所有边,就称这个图是可完全简化的。此时一定没有发生死锁(相当于能找到一个安全序列)。

如果最终不能消除所有边,那么此时就是发生了死锁。最终还连着边的那些进程就是处于死锁状态的进程。

2.4解除死锁

三种方法

  1. 终止所有死锁进程。

  2. 逐个终止死锁进程。

    又分为三类。

  3. 付出代价最小的死锁解除算法。


  1. 资源剥夺法。挂起(暂时放到外存上)某些死锁进程,并抢占它的资源,将这些资源分配给其他的死锁进程。但是应防止被挂起的进程长时间得不到资源而饥饿。
  2. 撤销进程法(或称终止进程法)。强制撤销部分、甚至全部死锁进程,并剥夺这些进程的资源。这种方式的优点是实现简单,但所付出的代价可能会很大。因为有些进程可能已经运行了很长时间,已经接近结束了,一旦被终止可谓功亏一篑,以后还得从头再来。
  3. 进程回退法。让一个或多个死锁进程回退到足以避免死锁的地步。这就要求系统要记录进程的历史信息,设置还原点,所以也难以实现。

根据下面,选择要解除的进程:

  • 进程优先级。选择优先级低的进行解除。
  • 进程执行了多少时间,还需要多少时间。选择使用(执行)时间少的解除。(因为执行时间长的都已经执行了好久了,现在解除可能要重头再来)
  • 进程使用了多少资源,还需要多少资源。选择使用资源多的。(解除这种占有的资源多的进程,死锁可能会更快的解除)
  • 进程是交互式的,还是批处理式的。选择批处理式的。(用户使用的是交互式的,需要及时反馈,不适合解除)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/426384.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu安装wordpress(基于LNMP环境)

参考链接 Ubuntu安装LNMP 安装步骤 环境需要LNMP环境&#xff0c;如果没有安装可以参考ZATA—LNMP简单安装 在mysql中设置wordpress所用的用户名和密码 #1. 登录mysql mysql -uroot -p #2. 创建wordpress数据库 create database wordpress; #3. 创建新用户user&#xff0c;…

使用Java实现一个简单的B树

1.B树简介 B树是一个搜索树&#xff0c;数据结构可以抽象成如二叉树一样的树&#xff0c;不过它有平衡、有序、多路的特点。 平衡&#xff1a;所有叶子节点都在同一层。有序&#xff1a;任一元素的左子树都小于它&#xff0c;右子树都大于它。多路&#xff1a;B树的每个节点最多…

【Linux】文件权限与类型全解:你的文件安全指南

欢迎来到 CILMY23 的博客 &#x1f3c6;本篇主题为&#xff1a;文件权限与类型全解&#xff1a;你的文件安全指南 &#x1f3c6;个人主页&#xff1a;CILMY23-CSDN博客 &#x1f3c6;系列专栏&#xff1a;Python | C | C语言 | 数据结构与算法 | 贪心算法 | Linux | 算法专题…

激光雷达点云处理—学习随记

一、激光雷达基本概念 激光雷达&#xff08;Light Detection and Ranging&#xff0c;LiDAR&#xff09;&#xff0c;是一种发射激光&#xff08;可见光-近红外&#xff09;于被瞄准物体表面并记录反射光被信号接收器接收到的时间以测定距离的方法。激光雷达通过以下公式确定物…

基于springboot酒店管理系统

酒店管理系统 552酒店管理系统 摘 要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认识&#xff0c;…

【MySQL】查询语句之inner、left、right、full join 的区别

前言&#xff1a; INNER JOIN 和 OUTER JOIN 是SQL中常用的两种连接方式&#xff0c;用于从两表活多表中提取相关的数据。两者区别主要在于返回的 结果集 如何处理 匹配 与 不匹配 的行。 目录 1、INNER JOIN 2、OUTER JOIN 3、总结 1、INNER JOIN 称为内连接&#xff0c;只…

【Python机器学习】NLP信息提取——命名实体与关系

我们希望计算机能够从文本中提取信息和事实&#xff0c;从而略微理解用户所说的内容。例如&#xff0c;当用户说“提醒我星期一浏览***.org网站”&#xff0c;我们希望这句话触发当天后下一个周一的日程或者提醒的操作。 要触发上述操作&#xff0c;需要知道“我”代表一种特定…

5.内容创作的未来:ChatGPT如何辅助写作(5/10)

引言 在信息爆炸的时代&#xff0c;内容创作已成为连接品牌与受众、传递信息与知识、以及塑造文化与观念的重要手段。随着数字媒体的兴起&#xff0c;内容创作的需求日益增长&#xff0c;对创作者的写作速度和质量提出了更高的要求。人工智能&#xff08;AI&#xff09;技术的…

感谢问界M9一打二十,让我们买到这么便宜的BBA

文 | AUTO芯球 作者 | 雷慢 国产豪华车&#xff0c;终于扬眉吐气了&#xff0c; 你敢信吗&#xff1f;在50万以上豪华车中&#xff0c; 现在问界M9一款车的月销量&#xff0c; 是其他前20名销量的总和&#xff01; 要知道&#xff0c;它的对手是各种宝马、奔驰、雷克萨斯的…

私有化通讯工具:安全、高效、个性化,重塑企业沟通生态

在当今数字化时代&#xff0c;即时通讯已成为企业日常运营中不可或缺的一部分。随着数据安全和隐私保护意识的日益增强&#xff0c;越来越多的企业开始寻求更加安全、可控的沟通方式。私有化聊天工具应运而生&#xff0c;以其独特的核心优势&#xff0c;为企业构建了一个安全、…

VMware vSphere 8.0 Update 3b 发布下载,新增功能概览

VMware vSphere 8.0 Update 3b 发布下载&#xff0c;新增功能概览 vSphere 8.0U3 | ESXi 8.0U3 & vCenter Server 8.0U3 请访问原文链接&#xff1a;https://sysin.org/blog/vmware-vsphere-8-u3/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页…

【Leetcode】70. 爬楼梯

题目来源 70. 爬楼梯 题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;有两种方法可以爬到楼顶。 1 阶…

webpack5 构建优化方案看这篇就够了!【Node.js进阶】

无论在面试还是内部晋升&#xff0c;webpack 构建优化方案 一直都是非常重要的部分。 webpack5构建加持 一、项目完成目标二、搭建项目1. 安装koa、koa/router &#xff08;如果已经配置可路过&#xff09;2. 创建入口文件3. 安装构建依赖4. 在项目根目录添加 .babelrc 文件5. …

一般在写SQL时需要注意哪些问题,可以提高查询的效率?

很多人写SQL按照自己喜好&#xff0c;没有规则意识&#xff0c;这对于自主查询影响不大&#xff0c;你爱怎么搞就怎么搞&#xff0c;一旦涉及到提交任务或团队共享&#xff0c;就不能乱写了&#xff0c;会浪费资源影响到开发效率&#xff0c;严重的甚至会服务器瘫痪。 提几个关…

进程的重要函数

进程的重要函数: fork函数 了解fork函数 通过调用fork()函数&#xff0c;则会产生一个新的进程。调用fork()函数的进程叫做 父进程&#xff0c;产生的新进程则为子进程。 其编码过程: 1.函数功能: 函数头文件 #include <sys/types.h> #include <unistd.h> 函数…

运用Java实现倒计时功能

这个功能其实是比较好实现的&#xff0c;一般来说java中实现倒计时有两种方法&#xff1a; 1、使用 scheduledexecutorservice创建一个可重复执行的任务&#xff0c;直到时间到&#xff1a; ScheduledExecutorService 是 Java 中一种用于安排延迟或定期任务的工具。我们可以使…

云计算第四阶段------CLOUD Day4---Day6

Cloud DAY4 项目架构图&#xff1a; 环境准备&#xff1a; 主机名称IP地址配置logstash192.168.1.27最低配置4核8G #书接上文&#xff0c;我们在华为云平台租了几台云服务器&#xff0c;这次买一台性能好的服务器&#xff0c;作为logstash软件部署的载体。 今天给小伙伴们带来…

低代码门户技术:构建高效应用的全新方式

什么是低代码门户技术&#xff1f; 低代码门户技术是一种利用低代码平台构建企业门户网站或应用的技术。门户通常是企业内部和外部用户访问信息和应用的集中平台。低代码门户技术通过图形化界面和预置组件&#xff0c;允许用户快速搭建和定制这些门户平台&#xff0c;而无需深…

TCP并发服务器的实现

一请求一线程 问题 当客户端数量较多时&#xff0c;使用单独线程为每个客户端处理请求可能导致系统资源的消耗过大和性能瓶颈。 资源消耗&#xff1a; 线程创建和管理开销&#xff1a;每个线程都有其创建和销毁的开销&#xff0c;特别是在高并发环境中&#xff0c;这种开销…

性能测试的复习3-jmeter的断言、参数化、提取器

一、断言、参数化、提取器 需求&#xff1a; 提取查天气获取城市名请求的响应结果&#xff1a;城市对查天气获取城市名的响应结果进行响应断言和json断言对查天气获取城市名添加用户参数 1、步骤 查看天气获取城市名 json提取器&#xff08;对响应结果提取、另一个接口请求…