大模型时代的 AI 产品经理何去何从?

每天 LLM 相关的资讯都让人过载。作为 AI 产品经理,你是更兴奋呢,还是更担忧呢?整理了一下个人近期的思考,欢迎感兴趣的朋友一起交流。不管答案如何,相信我们都不应置身事外。

1

关于大模型‍‍

大模型的各种原理讲解满天飞,或深或浅大家都有所了解,但不管这里面有多少算法和技术细节,作为产品经理,我们都希望抓住其中的核心主线,也即想清楚:

大模型的本质是什么?

我非常认同的一种说法是:大模型本质上是压缩、存储继而理解知识的一种方式。其中储藏的海量知识,可以通过 Prompt 被轻松提取出来,用于查询、生成甚至复杂推理,具备很强的泛化能力。

为什么说这是本质呢?因为这为我们带来了把 NLP(自然语言处理)技术变成通用能力方案的可能性。接触过智能语音语义相关产品解决方案的同行们可能都深有体会,ASR(语音识别)和 TTS(语音合成)技术是可以作为相对通用的基础能力交付给客户的,但唯独 NLP 是必须配合解决方案来进行落地的,完全是个知识加工人力密集型的产品。用业内自嘲的话术来讲,就是想要多少智能就需要投入多少人工。究其原因,本质上是因为 ASR 和 TTS 是感知智能,而 NLP 是认知智能。认知的背后是对世界知识的理解。之前 NLP 技术路线只能在特定业务场景根据特定用途对知识进行加工,所以不同的客户项目,就需要加工不同的模型来交付。

大模型的出现,使人类找到了目前最高效的处理知识的方式,远远超越了之前模型的效率。这就使得 AI 具备了理解海量知识的可能,可以把各种子领域的知识压缩在一个模型中,从而消除了 NLP 领域的中间环节任务和子领域专业模型,得到了可通用的方案。这正是陆奇博士在《新范式 新时代 新机会》主题演讲中所说的,大模型的出现让模型的成本发生了结构性的变迁,从边际成本转向固定成本。

不知道其他 NLP 从业者是什么感受,至少我是非常的振奋,因为终于看到了 NLP 方案规模化落地的希望。😊

所以这就理解了大模型路线的根本区别之所在。OpenAI 自成立之初,就是奔着 AGI(通用人工智能)去的。

距离 AGI 还有多远?

所以,大模型已经是 AGI 了吗?显然还不是,而且距离 AGI 还有多远也并不清楚。但我确实赞同业界的普遍共识——大模型的发展趋势应该是:多模态 + 具身智能。我认为这应该是通往 AGI 之路。

我们可以从人类输入和输出的角度来思考:

从输入角度看,这里的多模态字面上是指从文本拓展到语音、图像乃至视频等,而本质上是要能够捕捉人类能够识别的所有信息,甚至未来应该包括嗅觉、味觉、触觉等。只有做到这种级别的多模态,才能够让 AI 看到和人类同样的世界,AI 才能读懂人的表情、语气和神态,才能具备高级共情能力。

从输出角度看,大模型目前显然不具备对物理世界直接施加作用的能力,因此也无法完成其智能上的闭环。而人类正是通过身体与外部环境的互动,在感知-认知-决策-执行-反馈这个闭环中,完成了对自身和外界的改造,实现了智能上的进化。

这正如 LeCun 在访谈中所说:

这些系统离人类智力水平还差得远。尽管您可能会这么认为(AI 和人类智力差不多),因为这些系统在语言上很流畅;但它们思考、理解世界运作和计划的能力非常有限,它们对世界的理解非常肤浅。原因是它们仅在语言上受过训练,而语言只包含人类所有知识的一小部分。人类的大部分知识不是语言学的,所有动物的知识也不是语言学的。我们理所当然地认为——这就是波拉尼悖论(人类所知远胜于其所能言传),所有能力和技能,比如计划或非常简单的事情,任何 10 岁的孩子都可以做,比如清理餐桌和装满洗碗机,任何 17 岁的孩子都可以学习驾驶,但我们没有家用机器人。

为什么产业应用还未爆发?

既然大模型带来了 NLP 产品方案规模化落地的希望,而且 ChatGPT 也确实出了圈,但似乎大半年过去了,我们并没有看到大模型在产业界的成熟应用,大多数所谓创新产品都是 ChatGPT 的套壳。大家关于 LLM 的讨论也开始回归理性,寄希望于等待 Killer App 的出现。但我认为,我们的关注点首先要放在操作系统的出现上。

很多人认为大模型本身就是操作系统,似乎只要做好 Prompt Engineering 就能够产出可商业化落地的应用。但实际上这依然是一种粗暴的套壳思维。而在 To B 赛道,大家的关注点似乎也都在如何基于底座通用大模型训练领域专用模型,似乎为某个企业客户训练好专有模型后,就完成了交付。

但实际上,这之间有一个极大的 Gap。

我认为大模型的困境与之前 AI 方案的困境并无不同,它依然只是技术,不是产品,只是引擎,不是汽车。用户需要的不是 AI,而是 AI 赋能之后的产品和服务。忽视这一层 Gap,寄希望于企业或者行业 ISV 自行通过 Prompt 调用就能完成应用闭环,这显然不现实。而这里面的 Gap 恰恰能成为很多创业者的机会,也正是我所认为的真正的大模型操作系统以及应用框架。

具体说来,我认为这一层应该至少解决 3 方面问题:

首先是最核心的 Agent。不可否认,这是目前看上去最有可能成为封装大模型的操作系统形态,但具体 Agent 应该是什么样的,各大公司和开源社区都尚在探索之中。目前值得参考的一篇文章是 OpenAI 安全系统主管 Lilian Weng 的《LLM Powered Autonomous Agents》。这篇文章提出了 Agent = LLM + Memory + Planning Skills + Tool Use 的观点:

其次是功能模块的封装。我认为,大模型操作系统应该提供用户封装好的基础功能模块,诸如会话交互、知识检索、内容生成等。用户不应该像面对一台裸机一样,要从零开始自行开发每一个功能(即便是用 Prompt 形式的自然语言编程)。

最后是 API 及 SDK。大模型操作系统必须提供对外接口和应用程序框架,以供开发者进行使用。这一部分非常重要,一方面奠定了平台生态,另一方面也是大模型和外部系统交互的桥梁。如果企业无法基于平台高效开发应用,以及新的应用无法和已有的业务系统打通,那大模型就不可能落地。

2

关于产品经理‍‍

那么回到产品经理本身的话题上来,相应的,我觉得首先要想清楚的同样是:

产品经理的本质是什么?

我认为,产品经理的工作,本质上是做用户需求和技术能力的平衡。也就是说,当系统还不够智能的时候,产品经理要围绕用户的需求,去设计系统能力展示的方式,以弥补这之间的 Gap,充当用户和系统之间的桥梁。这种平衡最重要的手段之一就是做需求抽象,而需求抽象的前提是圈定用户群体和特定场景。之所以这样做,是因为平衡是需要成本的,产品经理的本质,就是找到收益最高性价比最好的平衡方法。

诚然,当系统足够智能的时候,这种平衡的成本会越来越小,所以产品经理的价值会越来越小。大模型时代,有可能会从桥梁退化为翻译,也就是 prompt 工程师,而 AGI 时代,可能就真的是人人都是产品经理,每个用户直接向系统提出个性化的需求,获取个性化服务,自己做自己的产品经理,而不需要任何中间环节。

AI 产品经理的机会在哪里?

结合第一部分所述,这个问题的答案就显而易见了。我认为,眼下相对清晰的是模型层的产品经理,重点职责会偏向大模型训练和交付平台的构建,以及领域数据的采集和治理等。而相对遥远的是应用层的产品经理,因为正如前述,在操作系统层尚未形成之前,很难想到除了套壳或缝合,现阶段还能落地什么。即便有一些好的想法和方向,也同样需要先自行探索如何填补模型和应用之间的 Gap,一样需要付诸时间和努力。当然短期来看,并不否认套壳或缝合也有其价值,但长远来看,这一定不是 AI-Native 的落地方式。

而对于操作系统层,我认为产品经理是有着非常广阔的发挥空间的。它既不那么的清晰,又不那么的遥远,同时又有足够的价值,也有足够的难度。这是需要一些有想象力的人,来创造答案的地方。

我们应该做什么?

首先,要足够耐心。正如前阵子腾讯小马哥诚言:

我们最开始以为这是互联网十年不遇的机会,但是越想越觉得这是几百年不遇的、类似发明电的工业革命一样的机遇。

深以为然。即便就算是以互联网十年不遇的机会来看,我们也可以听听吴军老师在得到里讲《理性看待 ChatGPT》时所说的:

但凡能成为趋势的技术,都会有几十年的发展机会……如果一项技术,或者一个新的领域,只存在几年的时间,错过前两年就没有机会了,那这样的所谓机会不要也罢。

就以电子商务为例,阿里巴巴之后还有京东,京东之后还有拼多多,拼多多之后还有直播带货。二十多年的浪潮里,一浪接一浪,什么时候入局都能创造机会。

其次,要深入学习。既然有了耐心,我们就应该沉下心来,花些时间和精力,去认真搞懂大模型,理解这个技术的本质,判断这个方向的趋势,而不应该只是停留在似懂非懂看看新闻的层面。目前大模型显然处在一个尚由算法驱动向产品驱动的过渡阶段,这个阶段的产品经理,必须要懂技术。甚至不光要有工程师背景,还应该去卷一卷算法。越是早期阶段的技术,越没有所谓的权威,越需要依靠自个人的学习力和判断力。

然后,要保持敏感。既然有了学习,我们就可以从过载的信息中,通过自己的判断,识别哪些是真正值得关注的,哪些只是遮眼浮云。我们要对那些真正有价值的技术和产品,保持充足的敏感,一旦出现就紧密跟进。

最后,要思考布局。工具类产品没有长期壁垒,长期壁垒只能来自于关系:

1. 人与系统的关系:你长期使用,积累的数据让大模型越来越了解你,自然会产生熟悉的粘性

2. 人与人的关系:通过制作并分享自己的模型,从而形成新一代的社交网络

3. 系统与系统的关系:即平台生态,例如可以和诸多已有信息化系统打通的大模型系统

工具是简单系统,而关系才是复杂系统。只有建立复杂系统,才能形成所谓的闭环、飞轮之类的概念(大模型本身就是一个量变导致质变的复杂网络)。这是我们在构想 AI-Native 的产品时,要提前思考的问题。

注:本文的写作没有借助 GPT 😂

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/426959.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenAI O1热度己过-如此快速的冷场带来的是人们更多对现今“AI”的思考

引入o1的瞬间辉煌 o1如耀眼的新星,闪耀于科技天空。发布时,因其思考能力而备受瞩目。它能在回答问题之前进行更多的思考,尤其擅长复杂推理。这种能力引发了众多用户的好奇与热情。诸如“9.8和9.11哪个大?”的简单问题被广泛地验证…

上海人工智能实验室开源视频生成模型Vchitect 2.0 可生成20秒高清视频

上海人工智能实验室日前推出的Vchitect2.0视频生成模型正在悄然改变视频创作的游戏规则。这款尖端AI工具不仅简化了视频制作流程,还为创作者提供了前所未有的灵活性和高质量输出。 Vchitect2.0的核心优势在于其强大的生成能力和高度的可定制性。用户只需输入文字描…

Java获取随机数

在Java中获取随机数通常会使用java.util.Random类或者Math.random()方法 1.java.util.Random java.util.Random类用于生成伪随机数。 // 使用无参构造方法创建Random对象Random rand new Random();// 生成一个[0, 100)范围内的随机整数int randomInt rand.nextInt(100);Sys…

算法练习题26——多项式输出(模拟)

输入格式 输入共有 2 行 第一行 1 个整数,n,表示一元多项式的次数。 第二行有 n1 个整数,其中第 i 个整数表示第 n−i1 次项的系数,每两个整数之间用空格隔开。 输出格式 输出共 1 行,按题目所述格式输出多项式。…

【ARM】中断的处理

ARM的异常向量表 如果发生异常后并没有exception level切换,并且发生异常之 前使用的栈指针是SP_EL0,那么使用第一组异常向量表。如果发生异常后并没有exception level切换,并且发生异常之 前使用的栈指针是SP_EL1/2/3,那么使用第…

雷朋太阳镜和AEG的制胜法宝是:音乐节以及数据驱动的品牌推广

图片来源:Photo by Ethan Robertson on Unsplash 几十年来,我们见证了流行文化偶像对大众的影响。雷朋一直是一个深受偶像和大众喜爱的品牌。借助这股浪潮,雷朋与全球最大的娱乐公司之一AEG合作,吸引消费者,并以沉浸式…

JAVA-集合相关

HashMap如何解决哈希冲突的? 计算hash值,基于hashCode计算冲突之后,先是使用链式寻址法当链表长度大于8,且hash表的容量大于60的时候,再添加元素则转化成红黑树 为什么计算hash值是,是将hash地址的值右移1…

推荐10款最佳的电脑监控软件,知名电脑监控软件推荐

随着互联网和科技的飞速发展,电脑监控软件成为企业和个人用户管理和保护信息安全的必备工具。这些软件可以帮助你实时了解电脑的使用情况、保护隐私、优化工作效率,甚至防止潜在的安全威胁。在这篇文章中,我们将为你推荐10款最佳的电脑监控软…

k8s的搭建

一、安装环境 准备三台主机: 192.168.1.66 k8s-master 192.168.1.77 k8s-node01 192.168.1.88 k8s-node02 网段: Pod ⽹段 172.16.0.0/16 Service ⽹段 10.96.0.0/16 注:宿主机⽹段、Pod…

乱弹篇(52)旁观者说

众所周知,地球人都晓得“股市是经济的晴雨表”这个定律,那么中秋节后的中国内地股市,为何在节后的9月18日首个交易日,上证指数仍继续下行,盘中还一度跌破2700点创7个多月以来新低,整体市场数千个股下跌呢&a…

c#进度条实现方法

在使用c#做WinFrom开发时,经常会用到进度条(ProgressBar)。那么如何才能实现winfrom进度条及进度信息提示呢? 方法一:多线程 使用c#做WinFrom开发,要实现进度条效果就需要用到多线程,如果不采…

CH1-2 误差分析

一、误差的概念 用计算机进行实际问题的数值计算时,往往求得的是问题的近似解,都存在误差。 模型误差:在建立数学模型过程中,要将复杂的现象抽象归结为数学模型,往往要忽略一些次要因素的影响,而对问题作一些简化&am…

Nginx越界读取缓存漏洞(CVE-2017-7529)

漏洞原理: 影响版本内默认配置模块的Nginx只需要开启缓存,攻击者可以通过发送包含恶意构造range域的header请求进行远程攻击造成信息泄露。 影响范围: Nginx 0.5.6 – 1.13.2 漏洞复现: 开启靶场,访问8080端口 中间…

数据处理与统计分析篇-day05-Pandas详解

创建DaraFrame对象 概述 DataFrame是一个表格型的结构化数据结构,它含有一组或多组有序的列(Series),每列可以是不同的值类型(数值、字符串、布尔值等)。 DataFrame是Pandas中的最基本的数据结构对象&…

如何使用下拉字段创建WordPress表单(简单方法)

许多网站所有者在收集用户输入时,都会因为表单过长而让用户感到压迫。 下拉列表字段通过提供一个简洁的选项列表,使表单变得更简单。这意味着它们可以提高表单完成率,并改善用户体验。 在本文中,我们将向您展示如何创建带有下拉…

Vue安装及环境配置【图解版】

欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 Facts speak louder than words! 目录 一.node.js的安装…

平替WordPress/Zendesk,3分钟零代码用HelpLook建立一个企业网站

您是否正寻找一个能同时接入网站、小程序、App的内容管理系统?是否希望无需后端技能也能轻松接入,且无需搭建服务器?尤其是有出海需求的企业,希望搭建一个国内外访问速度都快而稳定的在线帮助中心? 企业对于在线内容管…

YOLOv9改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失

一、本文介绍 本文记录的是利用Haar小波下采样对YOLOv9网络进行改进的方法研究。传统的卷积神经网络中常用的最大池化、平均池化和步长为2的卷积等操作进行下采样可能会导致信息丢失,为了解决信息丢失问题,HWD作者受无损信息变换方法的启发,…

算法知识点———并查集

并查集是一种用于管理元素所属集合的数据结构,实现为一个森林,其中每棵树表示一个集合,树中的节点表示对应集合中的元素。并查集支持两种操作: 合并(Union):合并两个元素所属集合(合…

nonlocal本质讲解(前篇)——从滤波到Nonlocal均值滤波

线性滤波 → \rightarrow →高斯滤波 → \rightarrow →高斯滤波 → \rightarrow →双边滤波 → \rightarrow →Nonlocal均值滤波 平均 高斯 双边 Nonlocal 目录 线性滤波高斯滤波双边滤波Nonlocal均值滤波 滤波最初是频域的概念,由于频域乘积对应空域卷积&am…