Matplotlib | 一文搞定Matplotlib从入门到实战演练!

文章目录

  • 1 什么是Matplotlib
    • 1.1 Matplotlib的安装
    • 1.2 Matplotlib的基本使用
  • 2 绘制直线
  • 3 绘制折线
    • 设置标签文字和线条粗细
    • 设置中文标题
    • 风格的设置
  • 4 绘制曲线
    • 绘制曲线y=x^2
    • 绘制正弦曲线和余弦曲线
    • 画布分区
  • 5 绘制散点图
    • 绘制不同种类不同颜色的线
  • 6 绘制条形图(柱状)
    • 绘制带方差的条形图
  • 7 绘制饼状图
  • 7 绘制直方图
  • 8 绘制盒图
  • 9 绘制三维图
  • 练习
    • 1. 用matplotlib绘制余切曲线并保存成图片。
    • 2. 用matplotlib绘制生成3行2列的子画布,第1行第1列绘制余弦曲线和第3行第3列绘制正弦曲线。
    • 3. 用matplotlib绘制一个饼状图(数据可以自定指定)。
    • 4. 用matplotlib绘制一个柱状图分析3部电影3天的票房。

1 什么是Matplotlib

\qquad Matplotlib 是一个 Python 的 2D绘图库。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。官网https://matplotlib.org/

\qquad 学习Matplotlib 可让数据可视化,更直观的真实给用户。使数据更加客观、更具有说服力。Matplotlib是Python的库,又是开发中常用的库

1.1 Matplotlib的安装

pip install matplotlib

1.2 Matplotlib的基本使用

\qquad 在使用Matplotlib绘制图形时,其中有两个最为常用的场景。一个是画点,一个是画线。pyplot基本方法的使用如下表。

在这里插入图片描述

2 绘制直线

import matplotlib.pyplot as plt# 将(0,1)点和(2,4)连起来
plt.plot([0, 2], [1, 4])
plt.show()

在这里插入图片描述

3 绘制折线

import matplotlib.pyplot as pltx = [1, 2, 3, 4, 5]
squares = [1, 14, 39, 16, 25]
plt.plot(x, squares)
plt.show()

在这里插入图片描述

设置标签文字和线条粗细

import matplotlib.pyplot as pltdatas = [1, 2, 3, 4, 5]
squares = [1, 14, 39, 16, 25]
plt.plot(datas,squares,linewidth=5) #设置线条宽度 
#设置图标标题,并在坐标轴上添加标签
plt.title('Numbers',fontsize=24)
plt.xlabel('datas',fontsize=14)
plt.ylabel('squares',fontsize=14)
plt.show()

在这里插入图片描述

设置中文标题

Matplotlib 默认情况不支持中文,我们可以使用以下简单的方法来解决:

import matplotlib.pyplot as plt# 准备数据
datas = [1, 2, 3, 4, 5]
squares = [1, 14, 39, 16, 25]
# 注意x和squares列表中元素个数要相同
plt.plot(datas, squares, linewidth=5)  # 设置线条宽度
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
# 添加标题
plt.title('设置标题', fontsize=24)
# x轴添加标签
plt.xlabel('X轴', fontsize=14)
# y轴添加标签
plt.ylabel('Y轴', fontsize=14)
# 显示图形
plt.show()

在这里插入图片描述

风格的设置

import matplotlib.pyplot as plt# 查看matplotlib中有哪些风格
# print(plt.style.available)# 设置风格
plt.style.use('ggplot')
plt.plot([1, 2], [1, 4])
plt.show()

在这里插入图片描述

某周最高温度和最低温度变化

import matplotlib.pyplot as plt# 构造数据
max_temperature = [26, 30, 31, 32, 33]
min_temperature = [12, 16, 16, 17, 18]
x = range(5)
plt.rcParams['font.family'] = ['SimHei']
x_ticks = ['星期{}'.format(i) for i inrange(1, 6)]
plt.title('某年某周第N周的温度')
plt.xlabel('周')
plt.ylabel('温度:单位(℃)')
# 设置x轴标签
plt.xticks(x, x_ticks)
# 填充数据
plt.plot(x, max_temperature, label='最高温')
plt.plot(x, min_temperature, label='最低温')
# 显示图例
plt.legend(loc=2)
plt.show()

在这里插入图片描述

4 绘制曲线

绘制曲线y=x^2

Matplotlib有很多函数用于绘制各种图形,其中plot函数用于曲线, 需要将200个点的x坐标和Y坐标分别以序列的形式传入plot函数,然后调用show函数显示绘制的图形。

【示例】一元二次方程的曲线

import matplotlib.pyplot as plt# 准备数据 x是200个点
x = range(-100, 100)
# y = x**2
y = [i ** 2 for i in x]
# 设置风格
plt.style.use('ggplot')
# 调用plot
plt.plot(x, y)
# 保存图片
plt.savefig('y=x的平方.jpg')
plt.show()

在这里插入图片描述

绘制正弦曲线和余弦曲线

使用plt函数绘制任何曲线的第一步都是生成若干个坐标点(x,y), 理论上坐标点是越多越好。本例取0到10之间100个等差数作为x的坐标,然后将这100个x坐标值一起传入Numpy的sin和cos函数,就会得到100个y坐标值,最后就可以使用plot函数绘制正弦曲线和余弦曲线。

import matplotlib.pyplot as plt
import numpy as np# 生成x的坐标(0-10的100个等差数列)
x = np.linspace(0, 10, 100)
y = np.sin(x)# 绘制正弦曲线
plt.plot(x, y, label="sin")
# 绘制余弦曲线
plt.plot(x, np.cos(x), label="cos")
# 给图像加图例
plt.legend()
plt.show()

在这里插入图片描述

画布分区

【示例】subplot分区

import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0, 10, 100)
# plt.plot(x, np.sin(x))
# plt.plot(x, np.cos(x))# 将画布分为区域,将图画到画布的指定区域 subplot()画布分区
# 将画布分为2行2列在第三个区域绘制图形
# 两种传递参数都可以
plt.subplot(2, 2, 1)
plt.plot(x, np.sin(x))
plt.subplot(222)
plt.plot(x, np.cos(x))
plt.subplot(2, 2, 3)
plt.plot(x, np.cos(x))
plt.subplot(224)
plt.plot(x, np.sin(x))plt.show()

在这里插入图片描述

【示例】subplot分区

#将画布分为2行2列,将图画到画布的1区域
plt.subplot(221)

【示例】subplots分区

import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0, 10, 100)
# plt.plot(x, np.sin(x))
# plt.plot(x, np.cos(x))# 将画布分为区域,将图画到画布的指定区域 subplot()画布分区
# 将画布分为2行2列在第三个区域绘制图形
# 两种传递参数都可以
plt.subplot(2, 2, 1)
plt.plot(x, np.sin(x))
plt.subplot(222)
plt.plot(x, np.cos(x))
plt.subplot(2, 2, 3)
plt.plot(x, np.cos(x))
plt.subplot(224)
plt.plot(x, np.sin(x))
# 使用subplots()进行画布分区
fig, ax = plt.subplots(nrows=2, ncols=3)
ax[0][0].plot(x, np.sin(x))
ax[1][2].plot(x, np.cos(x))
# ax[行索引, 列索引]
ax[0, 2].plot(x, np.sin(x))
ax[1, 0].plot(x, np.cos(x))
plt.show()

在这里插入图片描述

5 绘制散点图

用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联。
【示例】绘制散点图

import matplotlib.pyplot as plt
import numpy as np# 画散点图
x = np.linspace(0, 10, 100)  # 生成0到10中100个等差数
# plt.scatter(x, np.sin(x))
plt.plot(x, np.sin(x), 'o')
plt.show()

在这里插入图片描述

【示例】使用scatter绘制不同大小不同颜色的散点图

import matplotlib.pyplot as plt
import numpy as np# 绘制不同大小不同颜色的散点图
np.random.seed(0)
x = np.random.rand(100)
y = np.random.rand(100)
colors = np.random.rand(100)
size = np.random.rand(100) * 1000
plt.scatter(x, y, c=colors, s=size, alpha=0.7)
plt.show()

在这里插入图片描述

绘制不同种类不同颜色的线

作为线性图的替代,可以通过向 plot() 函数添加格式字符串来显示离散值。

可以使用以下格式化字符。

在这里插入图片描述

以下是颜色的缩写:

在这里插入图片描述

【示例】不同种类不同颜色的线

#不同种类不同颜色的线
x=np.linspace(0,10,100)
plt.plot(x,x+0,'-g') #实线 绿色
plt.plot(x,x+1,'--c') #虚线 浅蓝色
plt.plot(x,x+2,'-.k') #点划线 黑色
plt.plot(x,x+3,'-r') #实线 红色
plt.plot(x,x+4,'o') #点 默认是蓝色
plt.plot(x,x+5,'x') #叉叉 默认是蓝色
plt.plot(x,x+6,'d') #砖石 红色

【示例】不同种类不同颜色的线并添加图例

# 不同种类不同颜色的线并添加图例
x = np.linspace(0, 10, 100)
plt.plot(x, x + 0, '-g', label='-g')  # 实线 绿色
plt.plot(x, x + 1, '--c', label='--c')  # 虚线 浅蓝色
plt.plot(x, x + 2, '-.k', label='-.k')  # 点划线黑色
plt.plot(x, x + 3, '-r', label='-r')  # 实线 红色
plt.plot(x, x + 4, 'o', label='o')  # 点 默认是蓝色
plt.plot(x, x + 5, 'x', label='x')  # 叉叉 默认是蓝色
plt.plot(x, x + 6, 'dr', label='dr')  # 砖石 红色 
# 添加图例右下角lower right 左上角upper left 边框 透明度 阴影 边框宽度
plt.legend(loc='lower right', fancybox=True, framealpha=1, shadow=True, borderpad=1)
import matplotlib.pyplot as plt
import numpy as np# 准备数据
x = np.linspace(0, 10, 50)
plt.plot(x, x + 0, '--', label='--')
plt.plot(x, x + 1, ':g', label=':g')
plt.plot(x, x + 2, 'vb', label='vb')
plt.plot(x, x + 3, 'sy', label='sy')
plt.plot(x, x + 4, 'hr', label='hr')
# 添加图例
# plt.legend(loc='lower right')plt.legend(loc=4, fancybox=True, framealpha=1, shadow=True, borderpad=1)  # 要配合label去使用
plt.show()

在这里插入图片描述

6 绘制条形图(柱状)

条形图是用宽度相同的条形的高度或长短来表示数据多少的图形。 条形图可以横置或纵置,纵置时也称为柱形图。

使用bar函数可以绘制条形图。条形图主要用来纵向对比和横向对比的
bar(x,y,color,width) 函数来生成纵向条形图
barh(x,y,color,height) 函数来生成条形图

  • x 条装显示位置
  • y 显示的值
  • color 显示的颜色

【示例】使用bar绘制柱状图,并设置柱的宽度

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签# 准备数据
x = [2020, 2025, 2030, 2035]
y = [12000, 30000, 10000, 50000]
# 调用bar绘制条形图
plt.bar(x, y, width=2)# 设置xlabel, ylabel
plt.xlabel("年份")
plt.ylabel("销量")
# 添加标题
plt.title("4年的销售量")
# 调用xticks()
x_ticks = [f'{i}年' for i in x]
plt.xticks(x, x_ticks)
plt.show()

在这里插入图片描述

注意事项:bar函数的宽度并不是像素宽度。bar函数会根据二维坐标系的尺寸,以及x坐标值的多少,自动确定每一个柱的宽度,而 width指定的宽度就是这个标准柱宽度的倍数。该参数值可以是浮点数,如0。5,表示柱的宽度是标准宽度的0。5倍。

【示例】barh的使用

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签# 准备数据
x = [2020, 2025, 2030, 2035]
y = [12000, 30000, 10000, 50000]# 设置条的高度
plt.barh(x, y, height=2)
# xlabel ylabe1
plt.xlabel('销量')
plt.ylabel('年份')
plt.title('4年销量')y_ticks = [f'{i}年' for i in x]
plt.yticks(x, y_ticks)
plt.show()

在这里插入图片描述

【示例】对部分条形图,使用颜色区分

import matplotlib.pyplot as pltx = range(5)
y = [10, -13, 14, -20, 43]v_bar = plt.bar(x, y, color='lightblue')
for bar, height in zip(v_bar, y):if height < 0:bar.set(color='lightgreen', linewidth='3')

在这里插入图片描述

绘制带方差的条形图

【示例】带方差的条形图

import matplotlib.pyplot as plt# 准备数据
x = range(3)
x_label = ['bar1', 'bar2', 'bar3']
y = [1, 2, 3]
# 波动
variance = [0.2, 0.4, 0.5]
# 绘制柱形图
plt.bar(x, y, width=0.5, yerr=variance)
plt.xticks(x, x_label)
# 设置y轴坐标的范围 扩大范围
m = max(zip(y, variance))
maxy = (m[0] + m[1]) * 1.2
plt.ylim([0, maxy])
plt.show()

在这里插入图片描述

【示例】fill_between的使用

import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0, 10, 200)
y1 = 2 * x + 1
y2 = 3 * x + 1.5
plt.fill_between(x, y1, y2, color='red')
plt.show()

在这里插入图片描述

7 绘制饼状图

pie函数可以绘制饼状图,饼图主要是用来呈现比例的。只要传入比 例数据即可。
【示例】绘制饼状图

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
woman = 68187
man = 101351# 计算男生女生所占的比
man_perc = man / (man + woman)
woman_perc = woman / (man + woman)
labels = ['女', '男']
color = ['blue', 'red']
# 调用pie绘制饼图 传入一个列表,列表中是比例数据
paches, texts, autotexts = plt.pie([woman_perc, man_perc], autopct="%0.1f%%", labels=labels, explode=(0, 0.05))
# explode裂开
# 设置字体大小和颜色
for text in autotexts:text.set_color("white")text.set_fontsize(20)
for t in texts:t.set_color("red")t.set_fontsize(20)
plt.show()

在这里插入图片描述

7 绘制直方图

由一系列高度不等的纵向条纹或线段表示数据分布的情况,一般用横轴表示数据范围,纵轴表示分布情况。 特点:绘制连续性的数据,展示一组或多组数据的分布状况并统计

概念: 组距:每组数据的分割区域,例如1-5一组5-10一组。我们可以称数据的组距为5
组数:(最大数据-最小数据)/组距一般会100条数据可分5-12组

hist(data,bins,normed)

  • data 所有的数据
  • bins 分几组
  • normed y轴是否显示成百分比
import matplotlib.pyplot as plt
import numpy as np# 获取正太分布数据
x = np.random.randn(1000)
# 绘制直方图  hist
# plt.hist(x)
plt.hist(x, bins=100)
# 获取数据
data = [45, 49, 42, 42, 36, 37, 31, 38, 35, 39, 43, 33, 34, 36, 35, 36, 34, 32, 36, 32, 37, 33, 32, 38, 35]
max(data)
min(data)
# 设置组距
bin_width = 2
# 计算组数
bin_count = int((max(data) - min(data)) / bin_width)
bin_count
# 设置xticks
x_ticks = range(min(data), max(data) + 1, bin_width)
plt.xticks(x_ticks)
plt.hist(data, bin_count)
plt.show()

在这里插入图片描述

8 绘制盒图

在这里插入图片描述
盒图尽管与直方图形态上有很大差异,但含义类似,都是用于表示分布状态,不过盒图还有一个功能,就是能体现数据的中位数Q2、 四分之一位Q1、四分之三位Q3和离群点IQR = Q3 Q1如果Q11.5IQR或者Q3+1.5IQR就是离群点。

import matplotlib.pyplot as plt
import numpy as np# 准备数据 方差越大越分散 3就是很分散不集中 圈就是离群点
data = [np.random.normal(0, i, 100) for i in range(1, 4)]
# 调用boxplot()
# vert:是竖着画还是横着
# notch:切口 更好找到中位数
plt.boxplot(data, vert=True, notch=True)  # 默认是True
plt.title("boxplot")
plt.xticks([1, 2, 3], ["box1", "box2", "box3"])
plt.show()

在这里插入图片描述

9 绘制三维图

【示例】绘制三维图

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D# 准备数据
x = np.linspace(-10, 10, 100)
y = np.linspace(-10, 10, 100)
# 计算x y 的相交点
X, Y = np.meshgrid(x, y)
# 计算Z
Z = np.sqrt(X ** 2 + Y ** 2)
# 绘制三维图
# plt.contour(X,Y,Z)
plt.contourf(X, Y, Z)
# 三维画布绘制三维图
figure = plt.figure()
ax3d = Axes3D(figure)
ax3d.plot_surface(X, Y, Z)
plt.show()

在这里插入图片描述

练习

1. 用matplotlib绘制余切曲线并保存成图片。

2. 用matplotlib绘制生成3行2列的子画布,第1行第1列绘制余弦曲线和第3行第3列绘制正弦曲线。

3. 用matplotlib绘制一个饼状图(数据可以自定指定)。

4. 用matplotlib绘制一个柱状图分析3部电影3天的票房。

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
# 准备
real_names = ["人在囧途", "阿甘正传", "熊出没"]
real_num1 = [5453, 7548, 6543]
real_num2 = [1840, 4013, 3421]
real_num3 = [1080, 1673, 2342]
# 设置画布大小figure(figsize=(w,h))plt.figure(figsize=(8, 6), dpi=80)  # 640 * 480
# 调用bar绘制
x = range(len(real_names))
width = 0.3
plt.bar(x, real_num1, width=width, color='g', label=real_names[0])
plt.bar([i + width for i in x], real_num2, width=width, color='b', label=real_names[1])
plt.bar([i + width * 2 for i in x], real_num3, width=width, color='r', label=real_names[2])# 设置xlabel ylabel
# plt.xlabel("天")
plt.ylabel("票房")
plt.title('3天3部电影票房')x_ticks = [f"第{i + 1}天" for i in x]
plt.xticks([i + width for i in x], x_ticks)# 添加图例
plt.legend()
plt.show()

在这里插入图片描述

import matplotlib.pyplot as pltdata = range(200, 225, 5)
bar_labels = ['a', 'b', 'c', 'd', 'e']
x = range(len(bar_labels))# 设置画布
plt.figure(figsize=(8, 6))
bars = plt.barh(x, data, height=0.6)
# 设置yticks
plt.yticks(x, bar_labels, fontsize=24)
# 在指定坐标位置设置内容text
text_data = 1000000
for bar, d in zip(bars, data):x = bar.get_width() + bar.get_width() * 0.05y = bar.get_y() + bar.get_height() / 2text_data = dplt.text(x, y, text_data, fontsize=20)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/427484.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络 ---- OSI参考模型TCP/IP模型

目录 一、OSI参考模型 1.1 学习路线 1.2 OSI参考模型和TCP/IP模型 1.3 具体设备与具体层次对应关系 1.3.1 物理层 1.3.2 数据链路层 1.3.3 网络层 1.3.4 传输层 1.3.5 会话层、表示层、应用层 1.4 各层次数据传输单位 二、TCP/IP模型 2.1 学习路线 2.2 TCP/I…

对 JavaScript 原型的理解

笔者看了一些有关 JavaScript 原型的文章有感而发&#xff0c;就将所感所悟画了下来如果有理解错误和不足的地方&#xff0c;欢迎各位大佬指出&#xff0c;笔者感激不尽

【Django5】django的helloworld

安装django pip install djangoDjango官方中文文档 https://docs.djangoproject.com/zh-hans/5.1/Github链接 https://github.com/django/django创建Django项目 cd到想要创建项目的文件夹下&#xff0c;输入以下命令创建项目 这行代码将会在当前目录下创建一个 mysite 目录 …

9月26日云技术研讨会 | SOA整车EE架构开发流程及工具实施方案

面向服务的架构&#xff08;Service Oriented Architecture, SOA&#xff09;实施需要复杂的基础技术作为支撑&#xff0c;伴随着整车硬件资源的集中化、车载以太网等高速通信技术在车内的部署&#xff0c;将在未来一段时间内成为行业技术研究和市场布局的热点。 近年来&#x…

AD域控服务器

1.AD域控服务器安装 2.客户端Windows10加入域环境 3.组织单位OU和域用户创建 目的是分部门管理用户和使用域用户登录客户端 4.域用户安全策略 5.当客户端密码锁住了,管理员解锁账户。 6.只允许域用户使用自己的电脑 7.域策略 7.1统一客户端桌面壁纸 7.2重定向用户配置文件路径…

【macOS】【zsh报错】zsh: command not found: python

【macOS】【zsh Error】zsh: command not found: python 本地已经安装了Python&#xff0c;且能在Pycharm中编译Python程序并运行。 但是&#xff0c;在macOS终端&#xff0c;运行Python&#xff0c;报错。 首先要确认你在macOS系统下&#xff0c;是否安装了Python。 如果安…

每日刷题(算法)

我们N个真是太厉害了 思路&#xff1a; 我们先给数组排序&#xff0c;如果最小的元素不为1&#xff0c;那么肯定是吹牛的&#xff0c;我们拿一个变量记录前缀和&#xff0c;如果当前元素大于它前面所有元素的和1&#xff0c;那么sum1是不能到达的值。 代码&#xff1a; #def…

ElK 8 收集 Nginx 日志

1. 说明 elk 版本&#xff1a;8.15.0 2. 启个 nginx 有 nginx 可以直接使用。我这里是在之前环境下 docker-compose.yml 中启动了个 nginx&#xff1a; nginx:restart: alwaysimage: nginx:1.26.1ports:- "80:80"- "443:443"volumes:#- ./nginx/html:/…

Eigen3 教程基础篇(三)

参考 Eigen3 主页&#xff0c;Eigen3 官网教程 矩阵的本质&#xff0c;通过多种矩阵的应用去感受矩阵本质 3Blue1Brown 的线性代数&#xff0c;用可视化方法来表现线性代数的特性&#xff0c;强推 如何理解复数和虚数&#xff0c;有动画方便理解复数的意义 相关文章 Eigen…

《ElementUI/Plus 踩坑》el-table + sortablejs 拖拽顺序错乱(Vue2/3适用)

如图所示&#xff1a; 把第一行拖到最后一行&#xff0c;鼠标up&#xff1b;该行莫名其妙的跳到倒数第二行&#xff1b; 最后发现没有设置 el-table 属性 row-key &#xff0c;即行数据的 Key&#xff0c;用来优化 table 的渲染&#xff1b; 属性 row-key 描述如下&#xf…

YOLOv10轻量化快速涨点之改进AKConv

目录 1,什么是AKConv? 2,如何使用AKConv使YOLOv10快速长点? 2.1,在ultralytics-main/ultralytics/nn/modules/conv.py里面添加AKConv类 2.2,ultralytics-main/ultralytics/nn/modules/conv.py添加如下 2.3 在E:\czc\YOLOv10\ultralytics-main\ultralytics\nn\tasks.p…

算法.图论-并查集上

文章目录 1. 并查集介绍2. 并查集的实现2.1 实现逻辑2.2 isSameSet方法2.3 union方法(小挂大优化)2.4 find方法(路径压缩优化) 3. 并查集模板 1. 并查集介绍 定义&#xff1a; 并查集是一种树型的数据结构&#xff0c;用于处理一些不相交集合的合并及查询问题&#xff08;即所…

1 elasticsearch安装

【0】官网参考 https://www.elastic.co/guide/en/elasticsearch/reference/7.11/targz.html 【1】Centos7 下载安装 【1.1】下载 官网&#xff1a;Download Elasticsearch | Elastic 选择好自己想要的相关版本即可&#xff1b; 【2】Centos7.X 前置环境配置&#xff08;uli…

秦时明月6.2魔改版+GM工具+虚拟机一键端

今天给大家带来一款单机游戏的架设&#xff1a;秦时明月。 另外&#xff1a;本人承接各种游戏架设&#xff08;单机联网&#xff09; 本人为了学习和研究软件内含的设计思想和原理&#xff0c;带了架设教程仅供娱乐。 教程是本人亲自搭建成功的&#xff0c;绝对是完整可运行…

【Vmware16安装教程】

&#x1f4d6;Vmware16安装教程 ✅1.下载✅2.安装 ✅1.下载 官网地址&#xff1a;https://www.vmware.com/ 百度云盘&#xff1a;Vmware16下载 123云盘&#xff1a;Vmware16下载 ✅2.安装 1.双击安装包VMware-workstation-full-16.1.0-LinuxProbe.Com.exe&#xff0c;点击…

最新动态一致的文生视频大模型FancyVideo部署

FancyVideo是一个由360AI团队和中山大学联合开发并开源的视频生成模型。 FancyVideo的创新之处在于它能够实现帧特定的文本指导&#xff0c;使得生成的视频既动态又具有一致性。 FancyVideo模型通过精心设计的跨帧文本引导模块&#xff08;Cross-frame Textual Guidance Modu…

C#和数据库高级:抽象类和抽象方法

文章目录 一、为什么使用抽象类和抽象方法&#xff1f;1.1、父类与子类的相互转换 二、抽象类和抽象方法2.1、抽象类的定义和方法声明规范2.2、使用继承多态的机制解决问题 三、抽象类的概念和使用特点总结 一、为什么使用抽象类和抽象方法&#xff1f; 1.1、父类与子类的相互…

考研数据结构——C语言实现有向图邻接矩阵

首先&#xff0c;定义了一些基本的数据结构和常量&#xff1a; VertexType&#xff1a;顶点的数据类型&#xff0c;这里定义为char。EdgeType&#xff1a;边的数据类型&#xff0c;这里定义为int&#xff0c;用于存储权重。MAXVEX&#xff1a;定义了图中最大顶点数为100。INFIN…

C语言——自定义类型

目录 结构体 概念 结构体变量的创建和初始化 结构体的自引用 结构体的内存对齐 内存对齐存在的原因 合理设计结构体 方法一 方法二 结构体传参 结构体实现位段 什么是位段 位段的内存分配 位段的跨平台问题 注意 联合体 概念 验证 优点 小应用 什么是大小…

【Unity】对象池 - 未更新完

自定义泛型对象池 文章目录 自定义泛型对象池封装泛型类例子 使用Unity自带对象池 封装泛型类 public abstract class MyPool<T> : MonoBehaviour where T :Component {[SerializeField] protected T prefab; // 生成的预制体[SerializeField] protected int defaultNum…