Python酷库之旅-第三方库Pandas(104)

目录

一、用法精讲

451、pandas.DataFrame.pow方法

451-1、语法

451-2、参数

451-3、功能

451-4、返回值

451-5、说明

451-6、用法

451-6-1、数据准备

451-6-2、代码示例

451-6-3、结果输出

452、pandas.DataFrame.dot方法

452-1、语法

452-2、参数

452-3、功能

452-4、返回值

452-5、说明

452-6、用法

452-6-1、数据准备

452-6-2、代码示例

452-6-3、结果输出

453、pandas.DataFrame.radd方法

453-1、语法

453-2、参数

453-3、功能

453-4、返回值

453-5、说明

453-6、用法

453-6-1、数据准备

453-6-2、代码示例

453-6-3、结果输出

454、pandas.DataFrame.rsub方法

454-1、语法

454-2、参数

454-3、功能

454-4、返回值

454-5、说明

454-6、用法

454-6-1、数据准备

454-6-2、代码示例

454-6-3、结果输出

455、pandas.DataFrame.rmul方法

455-1、语法

455-2、参数

455-3、功能

455-4、返回值

455-5、说明

455-6、用法

455-6-1、数据准备

455-6-2、代码示例

455-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

451、pandas.DataFrame.pow方法
451-1、语法
# 456、pandas.DataFrame.pow方法
pandas.DataFrame.pow(other, axis='columns', level=None, fill_value=None)
Get Exponential power of dataframe and other, element-wise (binary operator pow).Equivalent to dataframe ** other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rpow.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.Parameters:
other
scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.fill_value
float or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.Returns:
DataFrame
Result of the arithmetic operation.
451-2、参数

451-2-1、other(必须)用于计算幂的对象,可以是另一个DataFrame、Series、标量或常数,DataFrame或Series应与调用的DataFrame形状兼容,以便进行元素级别的对齐。

451-2-2、axis(可选,默认值为'columns'){0 or ‘index’, 1 or ‘columns’}, 指定对齐的轴,如果是0或'index',则按行对齐;如果是1或'columns',则按列对齐,默认情况下按列对齐。

451-2-3、level(可选,默认值为None)如果使用MultiIndex(多级索引),可以指定在哪一层进行对齐,默认值为None,表示不使用多级索引。

451-2-4、fill_value(可选,默认值为None)在执行操作时,用于替换缺失值(NaN)的值,如果DataFrame中存在NaN值,操作之前将使用fill_value进行替换,默认值为None,即不替换NaN值。

451-3、功能

        用于逐元素地对DataFrame进行幂运算,该方法返回一个新的DataFrame,其中每个元素是调用DataFrame中的元素与other对应位置元素的幂。

451-4、返回值

        返回一个新的DataFrame,其中每个元素是调用DataFrame中元素与other对应位置元素的幂。

451-5、说明

        无

451-6、用法
451-6-1、数据准备
451-6-2、代码示例
# 456、pandas.DataFrame.pow方法
# 456-1、与标量的幂运算
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
result = df.pow(2)
print(result, end='\n\n')# 456-2、与另一个DataFrame的幂运算
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
other = pd.DataFrame({'A': [2, 2, 2],'B': [3, 3, 3]
})
result = df.pow(other)
print(result, end='\n\n')# 456-3、使用fill_value参数处理缺失值
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, None],'B': [4, None, 6]
})
df2 = pd.DataFrame({'A': [2, 2, 2],'B': [2, 2, 2]
})
result = df1.pow(df2, fill_value=1)
print(result)
451-6-3、结果输出
# 456、pandas.DataFrame.pow方法
# 456-1、与标量的幂运算
#    A   B
# 0  1  16
# 1  4  25
# 2  9  36# 456-2、与另一个DataFrame的幂运算
#    A    B
# 0  1   64
# 1  4  125
# 2  9  216# 456-3、使用fill_value参数处理缺失值
#      A     B
# 0  1.0  16.0
# 1  4.0   1.0
# 2  1.0  36.0
452、pandas.DataFrame.dot方法
452-1、语法
# 457、pandas.DataFrame.dot方法
pandas.DataFrame.dot(other)
Compute the matrix multiplication between the DataFrame and other.This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array.It can also be called using self @ other.Parameters:
other
Series, DataFrame or array-like
The other object to compute the matrix product with.Returns:
Series or DataFrame
If other is a Series, return the matrix product between self and other as a Series. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array.
452-2、参数

452-2-1、other(必须)要与之进行矩阵乘积的对象,可以是Series、DataFrame或numpy数组。

452-3、功能

        用于计算DataFrame与其他对象(如另一个DataFrame、Series或常量)之间的矩阵乘积,结果是一个新的DataFrame或Series,取决于操作数的类型和形状。

452-4、返回值

        返回的是矩阵乘积的结果,具体返回的类型和形状取决于输入的other参数的类型和形状。

452-5、说明

452-5-1、当与DataFrame进行点积时,列索引必须对齐(匹配)才能进行操作。

452-5-2、与Series进行点积时,Series的索引必须与DataFrame的列索引匹配。

452-5-3、与numpy数组进行点积时,数组的形状必须与DataFrame适当对齐(列数相同)。

452-6、用法
452-6-1、数据准备
452-6-2、代码示例
# 457、pandas.DataFrame.dot方法
# 457-1、DataFrame与DataFrame之间的点积
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
df2 = pd.DataFrame({'A': [7, 8],'B': [9, 10],'C': [11, 12]  # 注意:C列在这个操作中将被忽略,因为df1没有C列
})
# 假设我们只对A和B列感兴趣,并且想计算df1和df2中每对相应行的点积
# 我们需要先确保df1和df2的行数相同(这里不同,所以我们只处理共有的部分)
# 为了演示,我们只取df1的前两行与df2进行点积
common_rows = min(df1.shape[0], df2.shape[0])
# 使用numpy的点积功能,因为Pandas的dot()在这里不适用
import numpy as np
# 提取df1和df2的前两列(A和B)
df1_subset = df1[['A', 'B']].iloc[:common_rows]
df2_subset = df2[['A', 'B']]
# 计算点积
dot_products = np.dot(df1_subset.values, df2_subset.T.values)  # 注意转置df2_subset
print(dot_products, end='\n\n')# 457-2、DataFrame与Series之间的点积
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
series = pd.Series([1, 2], index=['A', 'B'])
result = df1.dot(series)
print(result, end='\n\n')# 457-3、DataFrame与array-like对象的点积
import numpy as np
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
array = np.array([[1, 2], [3, 4]])
result = df1.dot(array)
print(result)
452-6-3、结果输出
# 457、pandas.DataFrame.dot方法
# 457-1、DataFrame与DataFrame之间的点积
# [[43 48]
#  [59 66]]# 457-2、DataFrame与Series之间的点积
# 0     9
# 1    12
# 2    15
# dtype: int64# 457-3、DataFrame与array-like对象的点积
#     0   1
# 0  13  18
# 1  17  24
# 2  21  30
453、pandas.DataFrame.radd方法
453-1、语法
# 458、pandas.DataFrame.radd方法
pandas.DataFrame.radd(other, axis='columns', level=None, fill_value=None)
Get Addition of dataframe and other, element-wise (binary operator radd).Equivalent to other + dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, add.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.Parameters:
other
scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.fill_value
float or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.Returns:
DataFrame
Result of the arithmetic operation.
453-2、参数

453-2-1、other(必须)要加到DataFrame上的对象,可以是DataFrame、Series、标量等。

453-2-2、axis(可选,默认值为'columns'){0 or ‘index’, 1 or ‘columns’}, 指定对齐的轴,如果是0或'index',则按行对齐;如果是1或'columns',则按列对齐,默认情况下按列对齐。

453-2-3、level(可选,默认值为None)如果使用MultiIndex(多级索引),可以指定在哪一层进行对齐,默认值为None,表示不使用多级索引。

453-2-4、fill_value(可选,默认值为None)在执行操作时,用于替换缺失值(NaN)的值,如果DataFrame中存在NaN值,操作之前将使用fill_value进行替换,默认值为None,即不替换NaN值。

453-3、功能

        用于执行DataFrame(或者Series)与另一个对象(例如另一个DataFrame、Series、标量等)之间的反向加法运算,反向加法运算指的是执行other + DataFrame而不是DataFrame + other,该方法通常在实现对象的反向运算符重载时被调用,例如在其他对象调用加法运算时,DataFrame作为右操作数。

453-4、返回值

        返回一个新的DataFrame,其中包含了原DataFrame与other进行加法运算后的结果,返回的DataFrame的形状和索引根据参与运算的两个对象自动对齐,缺失值(NaN)根据fill_value参数处理。具体详情如下:

  • 如果other是标量,则对DataFrame中的每个元素都加上该标量。
  • 如果other是另一个DataFrame或Series,则对应位置的元素相加,索引不匹配的地方会产生NaN,除非使用fill_value参数来指定替代值。
  • 如果存在多级索引,可以通过指定level参数来在特定级别上对齐和计算。
453-5、说明

        无

453-6、用法
453-6-1、数据准备
453-6-2、代码示例
# 458、pandas.DataFrame.radd方法
# 458-1、使用标量进行反向加法运算
import pandas as pd
# 创建一个DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
result_scalar = df.radd(10)
print(result_scalar, end='\n\n')# 458-2、使用另一个DataFrame进行反向加法运算
import pandas as pd
# 创建一个DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 创建另一个DataFrame
df2 = pd.DataFrame({'A': [10, 20, 30],'B': [40, 50, 60]
})
result_df = df.radd(df2)
print(result_df, end='\n\n')# 458-3、使用fill_value进行反向加法运算
import pandas as pd
# 创建一个DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
df3 = pd.DataFrame({'A': [10, 20],'C': [70, 80]
})
result_fill_value = df.radd(df3, fill_value=0)
print(result_fill_value)
453-6-3、结果输出
# 458、pandas.DataFrame.radd方法
# 458-1、使用标量进行反向加法运算
#     A   B
# 0  11  14
# 1  12  15
# 2  13  16# 458-2、使用另一个DataFrame进行反向加法运算
#     A   B
# 0  11  44
# 1  22  55
# 2  33  66# 458-3、使用fill_value进行反向加法运算
#       A    B     C
# 0  11.0  4.0  70.0
# 1  22.0  5.0  80.0
# 2   3.0  6.0   NaN
454、pandas.DataFrame.rsub方法
454-1、语法
# 459、pandas.DataFrame.rsub方法
pandas.DataFrame.rsub(other, axis='columns', level=None, fill_value=None)
Get Subtraction of dataframe and other, element-wise (binary operator rsub).Equivalent to other - dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, sub.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.Parameters:
other
scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.fill_value
float or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.Returns:
DataFrame
Result of the arithmetic operation.
454-2、参数

454-2-1、other(必须)要减去的对象,可以是一个数值、Series、DataFrame或一个具有兼容形状的数组。如果other是一个常量(比如数字5),那么这个常量将被用作所有元素的被减数;如果是一个DataFrame或Series,则进行逐元素操作。

454-2-2、axis(可选,默认值为'columns'){0 or ‘index’, 1 or ‘columns’}, 指定对齐的轴,如果是0或'index',则按行对齐;如果是1或'columns',则按列对齐,默认情况下按列对齐。

454-2-3、level(可选,默认值为None)如果使用MultiIndex(多级索引),可以指定在哪一层进行对齐,默认值为None,表示不使用多级索引。

454-2-4、fill_value(可选,默认值为None)在执行操作时,用于替换缺失值(NaN)的值,如果DataFrame中存在NaN值,操作之前将使用fill_value进行替换,默认值为None,即不替换NaN值。

454-3、功能

        执行反向的减法运算。例如,如果有两个数据帧df1和df2,那么df1.rsub(df2)将计算df2-df1。如果df1和df2形状相同,减法将在相应位置逐元素执行;如果df2是一个标量值(如整数或浮点数),那么此标量将用作被减数,数据帧df1中的每个元素作为减数。

454-4、返回值

        返回一个新的DataFrame或Series,包含反向减法操作的结果,原始数据帧df1不会被修改,rsub会生成一个新的数据结构,返回的数据结构的形状和df1相同,并且其元素是根据指定的减法操作计算得出的。

454-5、说明

        无

454-6、用法
454-6-1、数据准备
454-6-2、代码示例
# 459、pandas.DataFrame.rsub方法
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [10, 10, 10], 'B': [10, 10, 10]})
result = df1.rsub(df2)
print(result)
454-6-3、结果输出
# 459、pandas.DataFrame.rsub方法
#    A  B
# 0  9  6
# 1  8  5
# 2  7  4
455、pandas.DataFrame.rmul方法
455-1、语法
# 460、pandas.DataFrame.rmul方法
pandas.DataFrame.rmul(other, axis='columns', level=None, fill_value=None)
Get Multiplication of dataframe and other, element-wise (binary operator rmul).Equivalent to other * dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, mul.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.Parameters:
other
scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.fill_value
float or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.Returns:
DataFrame
Result of the arithmetic operation.
455-2、参数

455-2-1、other(必须)要乘的对象,可以是一个数值、Series、DataFrame或一个具有兼容形状的数组。如果other是一个常量,那么这个常量将被用作所有元素的乘数;如果是一个DataFrame或Series,则进行逐元素操作。

455-2-2、axis(可选,默认值为'columns'){0 or ‘index’, 1 or ‘columns’}, 指定对齐的轴,如果是0或'index',则按行对齐;如果是1或'columns',则按列对齐,默认情况下按列对齐。

455-2-3、level(可选,默认值为None)如果使用MultiIndex(多级索引),可以指定在哪一层进行对齐,默认值为None,表示不使用多级索引。

455-2-4、fill_value(可选,默认值为None)在执行操作时,用于替换缺失值(NaN)的值,如果DataFrame中存在NaN值,操作之前将使用fill_value进行替换,默认值为None,即不替换NaN值。

455-3、功能

        执行反向的乘法运算。例如,如果有两个数据帧df1和df2,那么df1.rmul(df2)将计算df2*df1。如果df1和df2形状相同,乘法将在相应位置逐元素执行df1和df2;如果df2是一个标量值(如整数或浮点数),那么此标量将用作乘数,数据帧df1中的每个元素作为被乘数。

455-4、返回值

        返回一个新的DataFrame或Series,包含反向乘法操作的结果,原始数据帧df1不会被修改,rmul会生成一个新的数据结构,返回的数据结构的形状和df1相同,并且其元素是根据指定的乘法操作计算得出的。

455-5、说明

        无

455-6、用法
455-6-1、数据准备
455-6-2、代码示例
# 460、pandas.DataFrame.rmul方法
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [10, 10, 10], 'B': [10, 10, 10]})
result = df1.rmul(df2)
print(result)
455-6-3、结果输出
# 460、pandas.DataFrame.rmul方法
#     A   B
# 0  10  40
# 1  20  50
# 2  30  60

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/427543.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】STL简介

🔥个人主页: Forcible Bug Maker 🔥专栏:STL || C 目录 前言什么是STL?STL的历史STL的版本STL六大组件STL的优缺点STL的优点:STL的缺点: 如何学习STL结语 前言 本篇博客主要内容:ST…

灾备技术演进之路 | 虚拟化无代理备份只能挂载验证和容灾吗?只能无代理恢复吗?且看科力锐升级方案

灾备技术演进之路系列 虚拟化备份技术演进 摆脱束缚,加速前行 无代理备份仅能挂载/恢复验证吗? ——科力锐极简验证演练无代理备份来了 无代理备份无法应对平台级故障吗? ——科力锐应急接管无代理备份来了 无代理备份仅能同平台挂载吗&a…

Llama 3.1 Omni:颠覆性的文本与语音双输出模型

你可能听说过不少关于语言模型的进展,但如果告诉你,有一种模型不仅能生成文本,还能同时生成语音,你会不会觉得特别酷?今天咱们就来聊聊一个相当前沿的项目——Llama 3.1 Omni模型。这个模型打破了传统的文字生成边界,直接让文本和语音同时输出,实现了真正的"多模态…

无人机之AI跟踪篇

无人机的AI识别技术依托于计算机视觉和深度学习技术,实现了对目标的快速精准识别,在多个领域展现出了巨大的应用潜力和价值。以下是对无人机AI识别技术的详细解析: 一、无人机AI识别算法的基础原理 无人机AI识别算法主要基于先进的计算机视觉…

轻松解决Jetpack Compose中的一些痛点问题

公众号「稀有猿诉」 原文链接 轻松解决Jetpack Compose中的一些痛点问题 暑去秋来,金桂飘香,不知不觉中我们已经练完了『降Compose十八掌』,相信通过这一系列文章能够对Jetpack Compose有足够的理解,并能在实际项目中进行运…

Linux memcg lru lock提升锁性能

目录 内核关于per memcg lru lock的重要提交: 计算虚拟地址转换基本机制 问题背景 swap换入流程 时奎亮的per memcg lru lock分享视频 内核关于per memcg lru lock的重要提交: f9b1038ebccad354256cf84749cbc321b5347497 6168d0da2b479ce25a4647d…

感知笔记:ROS 视觉- 跟随红球

- 目录 - 如何在 ROS 中可视化 RGB 相机。如何作为机器人切换主题。如何创建 blob 检测器。如何获取要跟踪的颜色的颜色编码。如何使用 blob 检测数据并移动 RGB 相机以跟踪 blob。 机器人技术中最常见的传感器是不起眼的 RGB 摄像头。它用于从基本颜色跟踪(blob 跟…

ssm自助购药小程序 LW PPT源码调试讲解

第二章开发技术介绍 此系统的关键技术和架构,Java技术、B/S结构、Ssm框架和Mysql数据库,是本系统的关键开发技术,对系统的整体、数据库、功能模块、系统页面以及系统程序等设计进行了详细的研究与规划。 2.1 系统开发平台 在线自助购药小程…

PMP--二模--解题--1-10

文章目录 4.整合管理--商业文件--商业论证(是否值得所需投资、高管们决策的依据)反映了:1、 [单选] 收到新项目的客户请求之后,项目经理首先应该做什么? 14.敏捷--角色--产品负责人PO–职责–1.创建待办列表并排序;2.确…

大数据概念与价值

文章目录 引言大数据的概念高德纳咨询公司的定义麦肯锡全球研究所的定义什么是大数据? 大数据的特征Volume(体积)Variety(种类)Velocity(速度)Value(价值)Veracity&#…

计算机毕业设计Python+Flask微博情感分析 微博舆情预测 微博爬虫 微博大数据 舆情分析系统 大数据毕业设计 NLP文本分类 机器学习 深度学习 AI

首先安装需要的python库, 安装完之后利用navicat导入数据库文件bili100.sql到mysql中, 再在pycharm编译器中连接mysql数据库,并在设置文件中将密码修改成你的数据库密码。最后运行app.py,打开链接,即可运行。 B站爬虫数…

恢复已删除文件的可行方法,如何恢复已删除的文件

在清理 PC 或优化存储设备时无意中删除重要文件是一种常见的人为错误。不可否认,在批量删除文件时,您通常会一起删除垃圾文件和重要文件。您后来意识到一堆文件或文件中缺少一个重要的文档或文件。在这种情况下,您唯一的选择是寻找恢复已删除…

打点-heapdump信息泄露-shiro反序列化获得root权限shell

fscan 扫描结果 heapdump 下载 使用 JDumpSpider-1.1-SNAPSHOT-full.jar 分析,获取 shiro 密钥 验证 爆破利用链 命令执行

【小鹏汽车用户平台-注册安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 1. 暴力破解密码,造成用户信息泄露 2. 短信盗刷的安全问题,影响业务及导致用户投诉 3. 带来经济损失,尤其是后付费客户,风险巨大,造…

iotop 命令:磁盘IO监控和诊断

一、命令简介 ​iotop​命令用于监视磁盘I/O,实时显示每个进程或线程的读写速率等信息。非常适合用于诊断系统中的I/O瓶颈。 ‍ ​​ ‍ 安装 iotop 在大多数Linux发行版中,iotop​可能不是预装的。可以使用包管理器来安装它。 例如,在…

uniapp出现 下拉框等组件被遮挡 的分析

目录 1. 问题所示2. 代码复现3. 解决方法3.1 下拉框被遮挡3.2 uni-collapse-item 无法下拉的问题 1. 问题所示 下拉框被遮挡的问题&#xff1a; uni-collapse-item组件无法下拉的问题&#xff1a; 2. 代码复现 博主的代码精简如下&#xff1a; <template><view>…

K-means 算法的介绍与应用

目录 引言 K-means 算法的基本原理 表格总结&#xff1a;K-means 算法的主要步骤 K-means 算法的 MATLAB 实现 优化方法与改进 K-means 算法的应用领域 表格总结&#xff1a;K-means 算法的主要应用领域 结论 引言 K-means 算法是一种经典的基于距离的聚类算法&#xff…

微信支付 02 加深理解密钥,加密解密,数字签名,数字证书

1.0 1.1 公钥&#xff08;Public Key&#xff09; 定义&#xff1a; 公钥是在非对称加密系统中使用的一个密钥&#xff0c;可以安全地公开和广泛分发。功能&#xff1a; 主要用于加密数据和验证数字签名。在加密过程中&#xff0c;公钥用于加密信息&#xff0c;只有对应的私钥…

计算机网络:概述 --- 体系结构

目录 一. 体系结构总览 1.1 OSI七层协议体系结构 1.2 TCP/IP四层(或五层)模型结构 二. 数据传输过程 2.1 同网段传输 2.2 跨网段传输 三. 体系结构相关概念 3.1 实体 3.2 协议 3.3 服务 这里我们专门来讲一下计算机网络中的体系结构。其实我们之前…

.NET常见的几种项目架构模式,你知道几种?(附带使用情况投票)

前言 项目架构模式在软件开发中扮演着至关重要的角色&#xff0c;它们为开发者提供了一套组织和管理代码的指导原则&#xff0c;以提高软件的可维护性、可扩展性、可重用性和可测试性。 假如你有其他的项目架构模式推荐&#xff0c;欢迎在文末留言&#x1f91e;&#xff01;&a…