优化算法(一)—遗传算法(Genetic Algorithm)附MATLAB程序

遗传算法(Genetic Algorithm, GA)是一种启发式搜索算法,用于寻找复杂优化问题的近似解。它模拟了自然选择和遗传学中的进化过程,主要用于解决那些传统算法难以处理的问题。

遗传算法的基本步骤:

  1. 初始化种群(Initialization):生成一个由多个个体组成的初始种群。每个个体代表一个可能的解,通常以编码形式(如二进制字符串)表示。

  2. 评估适应度(Fitness Evaluation):对种群中的每个个体进行评估,计算其适应度值。适应度函数用于衡量个体解的质量。

  3. 选择操作(Selection):根据适应度值选择个体进行繁殖。常见的选择策略包括轮盘赌选择、锦标赛选择等。高适应度的个体更有可能被选中。

  4. 交叉操作(Crossover):将选择的个体进行交叉,生成新的个体。交叉操作模拟基因重组,以期产生更优的解。常见的交叉方式有单点交叉、多点交叉等。

  5. 变异操作(Mutation):对新个体进行随机变异,以引入多样性并防止早期收敛。变异操作改变个体的一部分基因,增加探索解空间的能力。

  6. 替换操作(Replacement):用新生成的个体替换种群中的部分个体,形成新的种群,进入下一代。

  7. 终止条件(Termination):检查是否满足终止条件,如达到最大迭代次数或解的适应度达到预设阈值。如果满足终止条件,算法结束;否则,返回第2步。

一、遗传算法基本原理

遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学原理的优化算法。其基本原理可以从生物学中的自然选择和遗传学的机制中得到启发。下面是遗传算法的基本原理及其关键组件:

  1. 自然选择: 自然选择是生物进化的核心机制之一。在遗传算法中,这种机制通过评估每个个体的适应度,决定哪些个体将被选中进行繁殖。适应度较高的个体更可能被选择,这样可以逐渐优化解的质量。

  2. 遗传学: 遗传学机制在遗传算法中体现在交叉(Crossover)和变异(Mutation)操作上。交叉操作模拟了基因的重组,而变异操作则引入了基因的随机变化。这两个操作共同作用,产生新的个体,增加种群的多样性,并探索解空间中的新区域。

二、遗传算法公式推导

遗传算法(Genetic Algorithm, GA)的核心在于模拟自然选择和遗传学原理来寻找最优解。虽然遗传算法并没有单一的数学公式来描述其整体工作过程,但我们可以通过一些基本的公式和推导来理解其主要操作。这些公式包括适应度计算、选择概率、交叉操作和变异操作。

2.1适应度函数(Fitness Function)

适应度函数 F(x)用于评价个体 x 的质量。对于最大化问题,适应度函数通常直接等于目标函数值:

F\left ( x \right )=f\left ( x \right )

对于最小化问题,可以将适应度函数定义为目标函数的负值:

F\left ( x \right )=-f\left ( x \right )

2.2选择操作(Selection)

选择操作根据个体的适应度确定其被选择的概率。最常见的选择方法是轮盘赌选择。选择概率 p_{_{i}} 可以通过以下公式计算:

(1)轮盘赌选择

假设种群中有 N个个体,第 i个个体的适应度为 F_{i}​,则个体 i 被选择的概率 p_{i}是:

其中,分母是所有个体适应度的总和,确保选择概率之和为 1。

(2)锦标赛选择

锦标赛选择通过在种群中随机选择 k 个个体进行竞争,并选择适应度最好的个体。假设在锦标赛中选择的 k 个体的适应度为 F_{i1},F_{i2},\cdots ,F_{ik},则选择概率可以定义为:

2.3交叉操作(Crossover)

交叉操作生成新的个体。常见的交叉方法是单点交叉。

单点交叉

假设有两个父代个体 P_{1}​ 和 P_{2}​,其基因序列分别为:

P_{1}=\left [ G_{1} ,G_{2},\cdots ,G_{k} \right ]| P_{2}=\left [ {G}'_{1} ,{G}'_{2},\cdots ,{G}'_{k} \right ]

选择一个交叉点 c(假设1\leq c< k),交叉操作会生成两个子代:

C_{1}=\left [ G_{_{1}} ,G_{2},\cdots ,{G}'_{c},{G}'_{c+1},\cdots ,{C}'_{k}\right ]C_{2}=\left [ {G}'{_{1}} ,{G}'_{2},\cdots ,G_{c},G_{c+1},\cdots ,C_{k}\right ]

多点交叉

选择多个交叉点 c_{1},c_{2},\cdots ,c_{m},然后在这些点之间交换基因。

2.4变异操作(Mutation)

变异操作通过对个体的基因进行随机修改来引入多样性。以下是几种常见的变异方法及其公式推导。

2.4.1二进制编码的变异

对于二进制编码的个体,变异操作通常通过翻转基因位来实现。例如,个体的基因序列为 G=\left [ g_{1},g_{2},\cdots ,g_{k} \right ],其中每个基因位 g_{i}是 0 或 1。

变异方法

  • 对于每个基因位g_{i} ,以变异概率 p_{m}​ 翻转该基因位:

这里 {g}'_{i}是变异后的基因位。

2.4.2实数编码的变异

对于实数编码的个体,变异操作可以通过在基因值上添加随机扰动来实现。例如,个体的基因序列为G=\left [ g_{1},g_{2},\cdots ,g_{k} \right ]

变异方法

对于每个基因 g_{i},以变异概率p_{m}在其值上添加一个随机扰动 \delta

其中 \sigma 是控制变异范围的参数, \delta 是从均匀分布中抽取的随机扰动。

2.5替换操作(Replacement)

替换操作决定如何将新生成的个体替换种群中的旧个体。虽然没有固定的数学公式,但常见的替换策略包括全替换和部分替换。

2.5.1全替换

将整个种群替换为新生成的个体: 

2.5.2部分替换

选择种群中最适应的个体保留,而将其他个体替换为新生成的个体:

New population=\left ( Old Population -Worst Individuala \right )\bigcup Offspring Population

2.6小结:

遗传算法中的核心操作包括适应度评估、选择、交叉和变异。每个操作都有其基本的公式和计算方法:

  • 适应度函数:评价个体的质量。
  • 选择操作:确定个体进入下一代的概率,轮盘赌选择和锦标赛选择为常用方法。
  • 交叉操作:生成新个体,通过交换基因组合来探索解空间。
  • 变异操作:引入基因变化,通过随机扰动或翻转基因来增加多样性。
  • 替换操作:更新种群,保证适应度较高的个体保留。

这些操作结合在一起,使遗传算法能够模拟自然进化过程,并有效地搜索优化问题的解空间。

三、MATLAB仿真程序

编写遗传算法(Genetic Algorithm, GA)在MATLAB中的仿真程序可以帮助你更好地理解和实现遗传算法。下面是一个基本的MATLAB遗传算法示例,它可以解决一个简单的优化问题,例如找到函数 f\left ( x \right )=x^{2}的最小值。我们将使用二进制编码来表示个体,并实现选择、交叉、变异以及适应度评估等操作。MATLAB仿真代码如下:

% 遗传算法基本参数设置
populationSize = 20;  % 种群大小
geneLength = 10;      % 基因长度(对应于二进制编码的位数)
crossoverRate = 0.8;  % 交叉率
mutationRate = 0.1;   % 变异率
maxGenerations = 50;  % 最大迭代代数% 适应度函数(目标函数)
fitnessFunction = @(x) x.^2;  % 目标是最小化x^2% 初始化种群
population = randi([0, 1], populationSize, geneLength);% 主循环:迭代遗传算法
for generation = 1:maxGenerations% 解码:将二进制编码转化为实际值decodedPopulation = bin2dec(num2str(population)) / (2^geneLength - 1) * 10; % 假设取值范围为[0, 10]% 计算适应度fitnessValues = fitnessFunction(decodedPopulation);% 选择:轮盘赌选择selectionProbabilities = (1 ./ (fitnessValues + 1)); % 使用适应度的倒数进行选择selectionProbabilities = selectionProbabilities / sum(selectionProbabilities);% 生成新种群newPopulation = zeros(size(population));for i = 1:populationSize/2% 选择父代parents = randsample(1:populationSize, 2, true, selectionProbabilities);parent1 = population(parents(1), :);parent2 = population(parents(2), :);% 交叉操作if rand < crossoverRatecrossoverPoint = randi([1, geneLength-1]);child1 = [parent1(1:crossoverPoint), parent2(crossoverPoint+1:end)];child2 = [parent2(1:crossoverPoint), parent1(crossoverPoint+1:end)];elsechild1 = parent1;child2 = parent2;end% 变异操作if rand < mutationRatemutationPoint = randi(geneLength);child1(mutationPoint) = 1 - child1(mutationPoint);endif rand < mutationRatemutationPoint = randi(geneLength);child2(mutationPoint) = 1 - child2(mutationPoint);end% 将子代添加到新种群newPopulation(2*i-1, :) = child1;newPopulation(2*i, :) = child2;end% 更新种群population = newPopulation;% 解码并显示当前种群中最优解decodedPopulation = bin2dec(num2str(population)) / (2^geneLength - 1) * 10;[~, bestIndex] = min(fitnessFunction(decodedPopulation));bestSolution = decodedPopulation(bestIndex);disp(['Generation: ', num2str(generation), ', Best Solution: ', num2str(bestSolution), ', Fitness: ', num2str(fitnessFunction(bestSolution))]);
end

代码解释

  1. 参数设置

    • populationSize: 种群大小。
    • geneLength: 每个个体的基因长度(即二进制编码的位数)。
    • crossoverRate: 交叉操作的概率。
    • mutationRate: 变异操作的概率。
    • maxGenerations: 最大迭代次数。
  2. 适应度函数

    • 使用目标函数 fitnessFunction 来计算个体的适应度。在本例中,目标是最小化函数 f\left ( x \right )=x^{2}
  3. 初始化种群

    • 随机生成初始种群,每个个体由二进制编码表示。
  4. 主循环

    • 解码:将二进制编码转化为实际值。
    • 计算适应度:根据目标函数计算每个个体的适应度。
    • 选择:使用轮盘赌选择算法选择父代个体。
    • 交叉:通过交叉操作生成子代个体。
    • 变异:对子代个体进行随机变异。
    • 更新种群:用新生成的个体替换旧种群。
  5. 显示结果

    • 在每一代中显示当前最优解及其适应度值。

注意事项

  • 该示例代码使用了简单的适应度函数和基本的遗传操作,实际应用中可能需要根据具体问题调整适应度函数、选择策略、交叉方法和变异操作。
  • 适应度函数的设计应根据实际问题进行调整,确保能够有效地引导搜索过程向最优解靠近。

通过这个示例,你可以在MATLAB中实现遗传算法,并根据实际需要对其进行扩展和改进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428095.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GNN-RAG:用于大模型推理的图神经检索

GNN-RAG&#xff1a;用于大模型推理的图神经检索 秒懂大纲提出背景解法拆解全流程优化创意总结 论文&#xff1a;GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning 代码&#xff1a;https://github.com/cmavro/GNN-RAG 秒懂大纲 ├── GNN-RAG【主题】…

美国站群服务器优化技巧解析

美国站群服务器&#xff0c;作为专为管理多个网站而设计的托管解决方案&#xff0c;其优化对于提升网站性能和用户体验至关重要。以下是一些关键的优化技巧&#xff1a; 首先&#xff0c;硬件配置是基础。选择高性能的CPU、大容量的内存以及高速的硬盘(如SSD)是提升服务器运算速…

Java 集合详解

目录 一. 概述 二. Collection接口实现类 三. Map接口实现类 四. 线程安全集合 五. List接口下集合实现原理 1. ArrayList实现原理 1.1. 基于动态数组 1.2. 随机访问 1.3. 添加元素 1.4. 删除元素 1.5. 迭代器 1.6. 克隆和序列化 1.7. ArrayList简单使用 2. Link…

Linux环境变量进程地址空间

目录 一、初步认识环境变量 1.1常见的环境变量 1.2环境变量的基本概念 二、命令行参数 2.1通过命令行参数获取环境变量 2.2本地变量和内建命令 2.3环境变量的获取 三、进程地址空间 3.1进程&#xff08;虚拟&#xff09;地址空间的引入 3.2进程地址空间的布局和理解 …

11年计算机考研408-数据结构

设执行了k次。 解析&#xff1a; d要第一个出&#xff0c;那么abc先入栈&#xff0c;d入栈然后再出栈&#xff0c;这前面是一个固定的流程&#xff0c;后面就很灵活了&#xff0c;可以ecba&#xff0c;ceba&#xff0c;cbea&#xff0c;cbae。 答案是4个序列。 解析&#xff1a…

【论文阅读】PERCEIVER-ACTOR: A Multi-Task Transformer for Robotic Manipulation

Abstract transformers凭借其对大型数据集的扩展能力&#xff0c;彻底改变了视觉和自然语言处理。但在机器人操作中&#xff0c;数据既有限又昂贵。通过正确的问题表述&#xff0c;操纵仍然可以从变形金刚中受益吗&#xff1f;我们使用peract来研究这个问题&#xff0c;peract…

Spring Boot利用dag加速Spring beans初始化

1.什么是Dag&#xff1f; 有向无环图(Directed Acyclic Graph)&#xff0c;简称DAG&#xff0c;是一种有向图&#xff0c;其中没有从节点出发经过若干条边后再回到该节点的路径。换句话说&#xff0c;DAG中不存在环路。这种数据结构常用于表示并解决具有依赖关系的问题。 DAG的…

elasticsearch同步mysql方案

文章目录 1、1. 使用数据库触发器2. 使用定时任务3. 监听MySQL二进制日志&#xff08;binlog&#xff09;4. 使用数据管道5. 使用第三方工具或服务6. 编写自定义脚本注意事项 2、1. 使用Logstash步骤&#xff1a;示例配置&#xff1a; 2. 使用Debezium步骤&#xff1a; 3. 自定…

【Redis入门到精通三】Redis核心数据类型(List,Set)详解

目录 Redis数据类型 ​编辑 1.List类型 &#xff08;1&#xff09;常见命令 &#xff08;2&#xff09;内部编码 2.Set类型 &#xff08;1&#xff09;常见命令 &#xff08;2&#xff09;内部编码 Redis数据类型 查阅Redis官方文档可知&#xff0c;Redis提供给用户的核…

JavaScript - Document文档操作

1. 前言 ​​​​​​​ 编写网页时&#xff0c;我们需要时刻操作文档进而完成我们想要的效果。这就是通过文档对象模型实现&#xff0c;使用Document对象控制HTML以及样式信息的API 2. Document的树结构 在了解Document文档对象模型之前&#xff0c;我们先了解Dom的树结构 …

使用scp命令从本地往服务器传输文件失败

解决办法&#xff1a; 找到这个文件&#xff0c;打开&#xff0c;将里面的服务器ip对应的一行数据删掉即可。

(c语言+数据结构链表)项目:贪吃蛇

目录 1.项目背景 2.游戏效果演⽰ 3. ⽬标 4. 技术要点 5. Win32 API介绍 5.1 Win32 API 5.2 控制台程序 5.3 控制台屏幕上的坐标COORD 5.4 GetStdHandle 5.5 GetConsoleCursorInfo 5.5.1 CONSOLE_CURSOR_INFO 5.6 SetConsoleCursorInfo 5.7 SetConsoleCursorPositi…

d3dcompiler47dll丢失怎么解决,详细介绍6种解决方案

在电脑使用过程中&#xff0c;我们可能会遇到各种问题&#xff0c;其中之一就是系统提示某个文件缺失。其中&#xff0c;d3dcompiler_47.dll是许多用户经常遇到的问题之一。这个文件是DirectX组件的一部分&#xff0c;如果缺失&#xff0c;可能会导致游戏或应用程序无法正常运行…

Qt/C++ 多线程同步机制详解及应用

在多线程编程中&#xff0c;线程之间共享资源可能会导致数据竞争和不一致的问题。因此&#xff0c;采用同步机制确保线程安全至关重要。在Qt/C中&#xff0c;常见的同步机制有&#xff1a;互斥锁&#xff08;QMutex、std::mutex&#xff09;、信号量&#xff08;QSemaphore&…

Ansbile-变量

文章目录 一、Ansible的常量&#xff08;内置的变量&#xff09;有哪些&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1f;&#xff1…

vulnhub(11):derpnstink(hydra爆破用户名和密码、验证的文件上传)

端口 nmap主机发现 nmap -sn 192.168.159.120/24 ​ Nmap scan report for 192.168.159.120 Host is up (0.00020s latency). ​ 120是新出现的机器&#xff0c;他就是靶机 nmap端口扫描 nmap -Pn 192.168.159.120 -p- --min-rate 10000 -oA nmap/scan 扫描开放端口保存到 nma…

【论文笔记】Are Large Kernels Better Teacheres than Transformers for ConvNets

Abstract 本文提出蒸馏中小核ConvNet做学生时&#xff0c;与Transformer相比&#xff0c;大核ConvNet因其高效的卷积操作和紧凑的权重共享&#xff0c;使得其做教师效果更好&#xff0c;更适合资源受限的应用。 用蒸馏从Transformers蒸到小核ConvNet的效果并不好&#xff0c;原…

图的应用(关键路径)

基于你设计的带权有向无环图&#xff0c;写出所有合法的关键路径&#xff0c;并算出关键路径总长度 文字描述&#xff1a;关键路径总长度的现实意义是什么&#xff1f; 1.关键路径 总长度454316 2.现实意义 从源点到汇点的所有路径中&#xff0c;具有最大路径长度的路径称…

好的头戴式降噪耳机一定很贵吗?四款热门头戴耳机盘点及推荐!

在快节奏的现代生活中&#xff0c;噪音无处不在&#xff0c;它常常干扰着我们的工作、学习与休闲时光。而一款高性价比的降噪蓝牙耳机&#xff0c;就如同一个贴心的伙伴&#xff0c;能为我们营造出一片宁静的听觉空间。如今&#xff0c;耳机市场蓬勃发展&#xff0c;想要好的头…

Broadcast:Android中实现组件及进程间通信

目录 一&#xff0c;Broadcast和BroadcastReceiver 1&#xff0c;简介 2&#xff0c;广播使用 二&#xff0c;静态注册和动态注册 三&#xff0c;无序广播和有序广播 1&#xff0c;有序广播的使用 2&#xff0c;有序广播的截断 3&#xff0c;有序广播的信息传递 四&am…