Python用TOPSIS熵权法重构粮食系统及期刊指标权重多属性决策MCDM研究|附数据代码...

原文链接:https://tecdat.cn/?p=37724

在当今世界,粮食系统的稳定性至关重要。尽管现有的全球粮食系统在生产和分配方面表现出较高的效率,但仍存在大量人口遭受饥饿以及诸多粮食安全隐患。与此同时,在学术领域,准确评估情报学期刊的质量和影响力对于学术研究和信息传播意义重大点击文末“阅读原文”获取完整代码数据)。

本研究旨在通过TOPSIS熵权法、多属性决策(MCDM)方法对全球粮食系统进行重构,以优化其效率、盈利能力、可持续性和公平性。

同时,结合python的代码和数据运用熵权法对情报学期刊的各项指标进行权重计算,为期刊评价提供科学方法。通过对粮食系统的四个程序 —— 生产、分配、加工和销售进行全面评估,我们致力于构建一个更加稳定、可持续且公平的粮食系统。而对于情报学期刊的研究,则有助于提升学术评价的准确性和科学性。

对于粮食系统的重构,我们提出了一系列模型。首先,建立模型 I 说明食物系统的效率和利润;其次,模型 II 衡量粮食系统的可持续性;第三,构建模型 III 证明食品系统中的公平问题。此外,我们还利用熵 topsis 方法评估食物系统的稳定性。对于情报学期刊指标权重的计算,结合python的代码和数据我们采用熵权法,通过对数据的处理和分析,得到了期刊学术质量、期刊影响力和期刊显示度等一级指标的权重。

对于重构粮食系统的建议Re-optimizing Food System 

我们的全球粮食系统是不稳定的,即使是在世界上通常服务良好的地区。这些不稳定的部分原因是我们目前庞大的国家和国际粮食生产商和分销商的全球体系。这种粮食系统允许粮食以相对便宜和高效的方式生产和分配,因此表明当前的模式优先考虑效率和盈利能力。

尽管这个系统效率很高,但是全球依然大量人口遭受饥饿,同时存在很多粮食安全隐患

我们希望提出一个模型,重新构想和确定我们食品系统的优先级,以优化效率、盈利能力、可持续性和/或公平性。

 解决方案

任务/目标

根据公开数据建立影响产量的原因,粮食生产对环境的影响即可持续性,食品运输过程的损耗和经济消耗,提出对于地区食品分配合理性的指标

问题重述

全球粮食系统由四个程序组成:粮食生产、分配、加工还有销售。我们对食物系统的效率进行了定量和充分的评估以及盈利能力、公平性、可持续性和稳定性,相应的变量侧重于每一个步骤。

•衡量效率和盈利能力

•衡量可持续性

•衡量公平

•变量的比较静态分析

•通过示例测量可伸缩性

模型简述

首先,我们建立模型I来说明食物系统的效率和利润,同时生产、加工和分销,并在ISM模型下进行计算确认。

第二,模型II是用来衡量粮食系统的可持续性,重点是食品系统的环境成本。我们计算出在给定条件下的显式和隐式成本用线性回归分析污染指数。我们可以定量地测量环境质量由食物系统引起的。

第三,我们构建了模型III,以证明食品系统中的公平问题主要与一个国家的食品支出有关。

此外,我们利用熵topsis方法来评估食物系统,并讨论现有系统在应对某些紧急情况时的稳定性。

部分模型展示如下

853571034fafebc2aec570e8858da7a2.png

ccad03aff1bda322334fe6d45d16812a.png

b835e3ff41a969b635d2d3ffaabbdf0d.png

基本完成需要完成的任务,该系统可用于世界各地的许多国家,它还强调了利用宏观经济学研究粮食系统公平性和可持续性的意义。这些数据在大多数国家都很常见。如上所述,我们可以到达通过调整生产要素或政府政策进行优化。

提供了一种简化但仍然定量的方法来衡量权益通过收集一个国家内不同人群的数据来计算差异,我们成功地衡量了粮食系统内部的公平水平,并进行了比较静态分析。

但是也存在明显缺点,特别是对于运输方面,我们采用的ISM解释结构模型仅仅能够定性地分析主要影响原因而不能定量分析,而且由于数据的缺乏,仅仅对部分地区较为准确,整个模型比较粗糙。


点击标题查阅往期内容

437f9f77f0a15f874d2313b1117c1a27.jpeg

R语言逻辑回归、决策树、随机森林、神经网络预测患者心脏病数据混淆矩阵可视化

outside_default.png

左右滑动查看更多

outside_default.png

01

99c394500527c8c052630329cc6f9e86.png

02

e282c18eee6e8fbec616f5d2d7168b1a.png

03

e8200a45339ddbc998d6030b07664101.png

04

75bd27fb8551b9fbe9ff6f7404910638.png

TOPSIS 方法在多属性决策(MCDM)中的应用|附数据代码

逼近理想解排序法(Technique for Order Preference by Similarity to Ideal Solution,TOPSIS)在 20 世纪 80 年代作为一种多准则决策方法出现。TOPSIS 选择与理想解的欧氏距离最短且与负理想解的距离最大的方案。

假设你要购买一部手机,去商店后根据 RAM、内存、屏幕尺寸、电池和价格等因素对 5 部手机进行分析。在考虑众多因素后感到困惑,不知如何决定购买哪部手机。TOPSIS 就是一种根据给定因素的权重和影响来分配排名的方法。

  • 权重:表示给定因素应被考虑的程度(默认所有因素权重为 1)。例如,若希望 RAM 的权重高于其他因素,可以将 RAM 的权重设为 2,其他因素设为 1。

  • 影响:指给定因素具有正面或负面的影响。例如,希望电池容量尽可能大,而手机价格尽可能低,所以给电池分配“+”权重,给价格分配“-”权重。

此方法可用于根据各种因素(如相关性、决定系数 $R^2$、准确率、均方根误差等)对机器学习模型进行排名。现在我们已经了解了 TOPSIS 是什么以及可以在哪里应用它。下面来看在给定的由多行(如不同的手机)和多列(如各种因素)组成的数据集上实施 TOPSIS 的步骤。

数据集示例:

给定数据集中特定因素的值被视为标准单位。始终对任何非数字数据类型进行标签编码。

7d117fbe49f823f4516dddf0e68bdbbe.png

步骤:

步骤 1:计算归一化矩阵和加权归一化矩阵。通过以下方式对每个值进行归一化,其中 $m$ 是数据集中的行数,$n$ 是列数。$i$ 沿行变化,$j$ 沿列变化。

139cad2e7018baba35721e1bc4760846.png

对于上述给定的值,归一化矩阵将是:

0f2614ed271384e132e9779fd5e46f83.png

然后,将每列中的每个值与相应的给定权重相乘。

def Normaze(dataset, nCol, weights):for i in range(1, nCol):temp = 0for j in range(len(dataset)):temp = temp + dataset.iloc\[j, i\]\*\*2temp = temp\*\*0.5for j in range(len(dataset)):dataset.iat\[j, i\] = (dataset.iloc\[j, i\] / temp)*weights\[i-1\]print(dataset)

步骤 2:计算理想最优解和理想最劣解以及每行与理想最劣解和理想最优解的欧氏距离。首先,确定理想最优解和理想最劣解:这里需要考虑影响,即它是“+”影响还是“-”影响。如果是“+”影响,那么某一列的理想最优解是该列的最大值,理想最劣解是该列的最小值,反之对于“-”影响则相反。

现在需要计算所有行中的元素与理想最优解和理想最劣解的欧氏距离。这里 $diw$ 是第 $i$ 行的最劣距离计算值,其中 $ti,j$ 是元素值,$tw,j$ 是该列的理想最劣解。类似地,可以找到 $dib$,即第 $i$ 行的最佳距离计算值。

5a1f88625e03e8a6bc7ba0f10b2fefce.png

现在,数据集将包含正距离和负距离,如下所示:

005f52dc7224e6dd7c2e21747c81e13b.png

步骤 3:计算 TOPSIS 得分并进行排名。现在我们有了距离正和距离负,让我们根据它们为每行计算 TOPSIS 得分。

TOPSIS 得分 = $diw$ / ($dib$ + $diw$) 对于每一行

现在根据 TOPSIS 得分进行排名,即得分越高,排名越好。

我们的数据集将如下进行排名:36e4d2ca6195b32e81c793b7d7e469ad.png

基于熵权法的情报学期刊指标权重计算|附数据代码

本文旨在通过熵权法对情报学期刊的各项指标进行权重计算,以评估不同指标在期刊评价中的重要性。通过对数据的处理和分析,得到了期刊学术质量、期刊影响力和期刊显示度等一级指标的权重。

一、引言

在情报学领域,对期刊的评价是一个重要的研究课题。准确评估期刊的质量和影响力对于学术研究和信息传播具有重要意义。本文采用熵权法对情报学期刊的各项指标进行权重计算,为期刊评价提供一种科学的方法。

二、数据准备

首先,使用pandas库读取情报学期刊数据文件情报学期刊.xlsx

b714a5073c7388e1db324de4dcf3c623.png

import pandas as pd# 加载Excel文件file\_path = '/mnt/data/核心期刊数据.xlsx'df = pd.read\_excel(file\_path)# 显示数据的前几行以了解其结构df.head()import matplotlib.pyplot as pltimport seaborn as sns# 设置中文字体,以便在图表中显示中文plt.rcParams\['font.sans-serif'\] = \['SimHei'\]plt.rcParams\['axes.unicode\_minus'\] = False# 创建一个画布,包含多个子图fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(15, 15))# 1. 条形图:展示各期刊的“出版文献量”sns.barplot(x='出版文献量', y='期刊名', data=df, ax=axes\[0, 0\])axes\[0, 0\].set\_title('各期刊的出版文献量')# 2. 饼图:展示不同“基金论文比”的分布df\['基金论文比分类'\] = pd.cut(df\['基金论文比'\], bins=\[0, 0.3, 0.6, 1\], labels=\['低', '中', '高'\])fund\_paper\_ratio\_distribution = df\['基金论文比分类'\].value\_counts()axes\[0, 1\].pie(fund\_paper\_ratio\_distribution, labels=fund\_paper\_ratio\_distribution.index, autopct='%1.1f%%')axes\[0, 1\].set\_title('基金论文比分布')# 3. 折线图:展示“综合影响因子”和“复合影响因子”的关系sns.lineplot(x='综合影响因子', y='复合影响因子', data=df, marker='o', ax=axes\[1, 0\])axes\[1, 0\].set\_title('综合影响因子与复合影响因子的关系')# 4. 箱线图:展示“篇均被引”的分布情况sns.boxplot(x=df\['篇均被引'\], ax=axes\[1, 1\])axes\[1, 1\].set\_title('篇均被引的分布情况')# 5. 散点图:展示“出版文献量”与“总被引频次”的关系sns.scatterplot(x='出版文献量', y='总被引频次', data=df, ax=axes\[2, 0\])axes\[2, 0\].set\_title('出版文献量与总被引频次的关系')# 调整布局plt.tight\_layout()plt.show()

fd6c14d5dd5821e16bf753e19710dff9.png

三、指标处理

  1. 获取正向指标列表:

    # 在没有去掉网络指标的前提下
    zhengxiang = data_qingbaoxue.columns.values.tolist()
    del zhengxiang\[0:2\]
    del zhengxiang\[1\]
    zhengxiang  # 获得正向指标的列表
  2. 获取负向指标列表:

    index = data_qingbaoxue.columns.values.tolist()
    del index\[0:2\]
    fuxiang = \['零引论文率'\]  # 获得负向指标列表
    journal\_name = data\_qingbaoxue\['图书馆学、情报学类期刊18'\]  # 包含了所有需要测量的期刊
    indexs = data_qingbaoxue\[index\]  # 包含了需要测量的指标的所有数据
  3. 进行数据归一化等操作:

    em = EntropyMethod(indexs, fuxiang, zhengxiang, journal_name)
    em.uniform()  # 归一化后的数据

    e0d373f1c737a1ef05cca343423192cd.png

    em.calc_probability()
    em.calc_entropy()
    em.calc\_entropy\_redundancy()  # 尝试计算信息效用值
    ``````
    em.calc_Weight()  # 计算得单项指标最终权重
    ``````
    weight = em.calc_Weight().tolist()
    yijizhibiao = \[\]
    yijizhibiao.append(sum(weight\[0:5\]))  # 按照分类将单项指标权重相加得一级指标权重
    yijizhibiao.append(sum(weight\[5:10\]))
    yijizhibiao.append(sum(weight\[10:\]))
    yijizhibiao = pd.Series(yijizhibiao, index=\['期刊学术质量', '期刊影响力', '期刊显示度'\], name='一级指标权重')
    yijizhibiao  # 计算一级指标权重
  4. 去除网络指标后再次计算:

    # 在删除网络指标的前提下
    zhengxiang.pop()
    zhengxiang.pop()  # 删除位于尾部的两个网络指标
    positive = zhengxiang
    ``````
    negative = fuxiang
    index.pop()
    index.pop()  # 同样是删除位于尾部的两个网络指标
    indexs = data_qingbaoxue\[index\]
    em = EntropyMethod(indexs, positive, negative, journal_name)
    ``````
    em.uniform()

    6ab462f20f638381e859dd15697c4541.png

    em.calc_probability()
    em.calc_entropy()
    em.calc\_entropy\_redundancy()  # 尝试计算信息效用值
    ``````
    em.calc_Weight()  # 计算得单项指标最终权重
    ``````
    weight = em.calc_Weight().tolist()
    yijizhibiao = \[\]
    yijizhibiao.append(sum(weight\[0:5\]))
    yijizhibiao.append(sum(weight\[5:10\]))
    yijizhibiao.append(sum(weight\[10:\]))
    yijizhibiao = pd.Series(yijizhibiao, index=\['期刊学术质量', '期刊影响力', '期刊显示度'\], name='一级指标权重')
    yijizhibiao  # 计算一级指标权重

a44a05cc37b44e5e7a4f57ab14d55a64.png 

16ae01508b8f259cea3cd6be605a97ab.png 

a83558d9e2681b81d5dc802bbcfded78.png

四、结论

通过熵权法对情报学期刊数据进行处理和分析,成功计算出了不同指标下期刊学术质量、期刊影响力和期刊显示度等一级指标的权重,为情报学期刊的评价提供了一种有效的方法。

关于分析师 

edd9143afb3a4aae5f351359e68e5f4b.png

在此对 Sikun Chen 对本文所作的贡献表示诚挚感谢,他在复旦大学完成了数学与应用数学专业的学业,专注数理金融、数据采集等领域。擅长 Matlab。

ae5ba57fdfe77f4dad62fdb7ae0cced5.jpeg

本文中分析的数据、代码分享到会员群,扫描下面二维码即可加群! 

2816b5d5b027c37c05fbbb2e6b78f463.png

资料获取

在公众号后台回复“领资料”,可免费获取数据分析、机器学习、深度学习等学习资料。

f1da2dcc8da78a3a5a2b569a6640eae1.jpeg

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《Python用TOPSIS熵权法重构粮食系统及期刊指标权重多属性决策MCDM研究》。

点击标题查阅往期内容

MATLAB改进模糊C均值聚类FCM在电子商务信用评价应用:分析淘宝网店铺数据|数据分享

R语言软件对房屋价格预测:回归、LASSO、决策树、随机森林、GBM、神经网络和SVM可视化|数据分享

数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROC

R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据

逻辑回归Logistic模型原理R语言分类预测冠心病风险实例

数据分享|用加性多元线性回归、随机森林、弹性网络模型预测鲍鱼年龄和可视化

R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)

Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

R语言Bootstrap的岭回归和自适应LASSO回归可视化

R语言Lasso回归模型变量选择和糖尿病发展预测模型

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

基于R语言实现LASSO回归分析

R语言用LASSO,adaptive LASSO预测通货膨胀时间序列

R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例

Python中的Lasso回归之最小角算法LARS

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现

R语言实现LASSO回归——自己编写LASSO回归算法

R使用LASSO回归预测股票收益

python使用LASSO回归预测股票收益

07b827c0c590b2b32717d041dd2ec1e2.jpeg

b838f276397132a81d83ddd4084a44ad.png

b7f50a65fe7af925e532771ac1ecf053.png

1c2db10e212d4fdcb4526493a68e0e71.jpeg

f6cf57e2a382500305ba0ec44f64ec99.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428437.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenAI GPT o1技术报告阅读(3)-英文阅读及理解

✨继续阅读报告:使用大模型来学习推理(Reason) 原文链接:https://openai.com/index/learning-to-reason-with-llms/ 这次我们继续看一个英文阅读理解的案例。 原问题: The following passage is the draft of an excerpt from a contempora…

基于OpenCV的YOLOv5图片检测

利用OpenCV的DNN模块加载onnx模型文件进行图片检测。 1、使用的yolov5工程代码,调用export.py导出onnx模型。 2、下载opencv版本,https://opencv.org/releases/ 使用opencv版本4.5.3或以上,本文使用的opencv4.6.0 3、使用vc20…

css设置overflow:hiden行内元素会发生偏移的现象

父级元素包含几个行内元素 <div id"box"><p><span>按钮</span><span>测试文字文字文字测试文字文字文字</span><span>看这里</span></p></div>#box p{width: 800px;font-size: 30px;}#box p span{disp…

VMware启动时报错: “另一个程序已锁定文件的一部分,进程无法访问” 分析记录

项目场景&#xff1a; VMware启动时报错: “另一个程序已锁定文件的一部分,进程无法访问” 问题描述 VMware启动时报错: “另一个程序已锁定文件的一部分,进程无法访问” 原因分析&#xff1a; 虚拟机开启后会对部分文件继续加密&#xff0c;关闭时虚拟机会自动对其解密&…

css设置动态数组渲染及中间线平均分开显示

效果图&#xff1a; <template><div class"container"><div v-for"(item, index) in items" :key"index" class"item-container"><span class"item">{{ item }}</span><span v-if"in…

二级C语言2023-9易错题

1 二叉树结点数计算&#xff1a; 一棵二叉树有10个度为1的结点&#xff0c;7个度为2的结点&#xff0c;则该二叉树共有____个结点。 解&#xff1a; 2 指针&#xff1a; 有以下程序 #inctude<stdio.h> #include<stdlib.h> main() { int *a&#xff0c;*b&…

Unity数据持久化4——2进制

概述 基础知识 各类型数据转字节数据 文件操作相关 文件相关 文件流相关 文件夹相关 练习题 using System; using System.Collections; using System.Collections.Generic; using System.IO; using System.Text; using UnityEngine;public class Exercises1 : MonoBehaviour {/…

6. Python 输出长方形,直角三角形,等腰三角形

使用Python输出长方形&#xff0c;直角三角形&#xff0c;等腰三角形 这里主要使用python语言里的循环知识&#xff0c;具体说是Python语言里的循环嵌套&#xff0c; 注意&#xff0c;在实际使用中&#xff0c;循环嵌套一般最多到达3层&#xff0c;嵌套太多会影响到程序执行。…

详解ChatBI Agent架构:打造高效数据统计系统

随着人工智能技术的迅猛发展&#xff0c;智能对话系统在各行各业中的应用越来越广泛。本文将介绍一种名为ChatBI Agent的架构设计&#xff0c;并以电信运营商系统的经分数据统计Agent为案例&#xff0c;结合具体的代码实现&#xff0c;帮助读者了解这一系统的设计理念和实现方式…

新产品,推出 MLX90372GVS 第三代 Triaxis® 位置传感器 IC,适用于汽车和工业系统(MLX90372GVS-ACE-308)

Triaxis 旋转和线性位置传感器IC&#xff1a; MLX90372GVS-ACE-103 MLX90372GVS-ACE-108 MLX90372GVS-ACE-301 MLX90372GVS-ACE-200 MLX90372GVS-ACE-208 MLX90372GVS-ACE-303 MLX90372GVS-ACE-300 MLX90372GVS-ACE-350 MLX90372GVS-ACE-100 MLX90372GVS-ACE-101 MLX90372GVS-…

6.C_数据结构_查询_哈希表

概述 哈希表的查询是通过计算的方式获取数据的地址&#xff0c;而不是依次比较。在哈希表中&#xff0c;有一个键值key&#xff0c;通过一些函数转换为哈希表的索引值。 其中&#xff1a;这个函数被称为哈希函数、散列函数、杂凑函数&#xff0c;记为&#xff1a;H(key) 哈希…

使用 nvm 管理 node 版本:如何在 macOS 和 Windows 上安装使用nvm

&#x1f525; 个人主页&#xff1a;空白诗 文章目录 一、引言二、nvm的安装与基本使用2.1 macOS安装nvm2.1.1 使用 curl 安装2.1.2 使用 Homebrew 安装 2.2 Windows安装nvm2.2.1 下载 nvm-windows2.2.2 安装 nvm-windows 2.3 安装node2.4 切换node版本 三、常见问题及解决方案…

STM32读写内部flash

一.简介 在 STM32 芯片内部有一个 FLASH 存储器&#xff0c;它主要用于存储代码&#xff0c;我们在电脑上编写好应用程序后&#xff0c;使用下载器把编译后的代码文件烧录到该内部 FLASH 中&#xff0c;由于 FLASH 存储器的内容在掉电后不会丢失&#xff0c;芯片重新上电复位后…

【redis-01】redis基本数据类型和使用场景

redis系列整体栏目 内容链接地址【一】redis基本数据类型和使用场景https://zhenghuisheng.blog.csdn.net/article/details/142406325 redis基本数据类型和使用场景 一&#xff0c;redis基本数据类型和使用场景1&#xff0c;String数据类型2&#xff0c;Hash数据类型3&#xff…

Linux top命令详解与重点内容说明

文章目录 重点说明基本信息进程(任务)信息cpu占用信息%Cpu(s)内存信息交换内存信息每列含义说明交互命令多窗口模式颜色配置命令参数 重点说明 top命令非常强大&#xff0c;也非常复杂&#xff0c;很难面面俱到&#xff0c;也没有必要&#xff0c;这篇文章的目的是介绍重点&am…

2024华为杯研究生数学建模竞赛(研赛)选题建议+初步分析

提示&#xff1a;C君认为的难度&#xff1a;DE<C<F&#xff0c;开放度&#xff1a;CDE>F。 华为专项的题目&#xff08;A、B题&#xff09;暂不进行选题分析&#xff0c;不太建议大多数同学选择&#xff0c;对自己专业技能有很大自信的可以选择华为专项的题目。后续会…

英集芯IP5912:集成开关充电功能的低功耗8位POWER MCU芯片

英集芯IP5912是一款功能丰富的、集成了降压充电管理功能的8位MCU芯片&#xff0c;它内置了一个5V输入的同步降压充电DC-DC&#xff0c;功率管也是内置的&#xff0c;同时提供最大1.5A的充电电流。封装方式采用SOP16&#xff0c;方案应用时只需要很少的外围器件&#xff0c;就可…

【多线程】CAS的原理及应用,看这篇文章就够啦

&#x1f490;个人主页&#xff1a;初晴~ &#x1f4da;相关专栏&#xff1a;多线程 / javaEE初阶 一、CAS概述 CAS&#xff08;Compare and Swap&#xff09;&#xff0c;中文译为 “比较并交换” &#xff0c;是一种无锁算法中常用的原子操作。CAS通常用于实现线程之间的同…

linux之nacos安装

1:下载nacos安装包 方式一、进入官网下载压缩包 官网地址 找到nacos-server-2.0.1.tar.gz 点击进行下载&#xff0c;下载完成后上传到服务器中。 方式二、使用wget命令下载 也有两种方式&#xff1a;第一种下载速度较慢 wget https://github.com/alibaba/nacos/releases/downl…

Zookeeper学习

文章目录 学习第 1 章 Zookeeper 入门1.1 概述Zookeeper工作机制 1.2 特点1.3 数据结构1.4 应用场景统一命名服务统一配置管理统一集群管理服务器动态上下线软负载均衡 1.5 下载zookeeper 第 2 章 Zookeeper 本地安装2.1 本地模式安装安装前准备配置修改操作 Zookeeper本地安装…