Redis中Hash(哈希)类型的基本操作

文章目录

  • 一、 哈希简介
  • 二、常用命令
    • hset
    • hget
    • hexists
    • hdel
    • hkeys
    • hvals
    • hgetall
    • hmget
    • hlen
    • hsetnx
    • hincrby
    • hincrbyfloat
    • hstrlen
  • 三、命令小结
  • 四、哈希内部编码方式
  • 五、典型应用场景
  • 六、 字符串,序列化,哈希对比


一、 哈希简介

几乎所有的主流编程语言都提供了哈希(hash)类型,它们的叫法可能是哈希、字典、关联数组、映射。在 Redis 中,哈希类型是指值本身又是一个键值对结构,形如 key = “key”,value = { { field1, value1 }, …, {fieldN, valueN } },Redis 键值对和哈希类型二者的关系可以用图 2-15 来表示。
在这里插入图片描述
哈希类型中的映射关系通常称为 field-value,用于区分 Redis 整体的键值对(key-value)注意这里的 value 是指 field 对应的值,不是键(key)对应的值,请注意 value 在不同上下文的作用。

二、常用命令

hset

HSET

  • 设置 hash 中指定的字段(field)的值(value)。
  • 语法:HSET key field value [field value ...]
  • 命令有效版本:2.0.0 之后
  • 时间复杂度:插入一组 field 为 O(1), 插入N组 field为 O(N)
  • 返回值:添加字段的个数。
  • 示例:
    在这里插入图片描述
    此处可以一次只插入一个,也可以一次插入N个。

hget

HGET

  • 获取 hash 中指定字段的值。
  • 语法: HGET key field
  • 命令有效版本:2.0.0 之后
  • 时间复杂度:0(1)
  • 返回值:字段对应的值或者 nil。
  • 示例:

在这里插入图片描述

hexists

HEXISTS

  • 判断 hash 中是否有指定的字段。
  • 语法: HEXISTS key field
  • 命令有效版本:2.0.0 之后
  • 时间复杂度:O(1)
  • 返回值:1表示存在,0表示不存在。
  • 示例:

在这里插入图片描述

hdel

HDEL

  • 删除 hash 中指定的字段。
  • 语法: HDEL key field [field ....]
  • 命令有效版本:2.0.0 之后
  • 时间复杂度:删除一个元素为 O(1),删除 N 个元素为 O(N).
  • 返回值:本次操作删除的字段个数。
  • 示例:

在这里插入图片描述

hkeys

HKEYS

  • 获取 hash 中的所有字段(field)。
  • 语法: HKEYS key
  • 命令有效版本:2.0.0 之后
  • 时间复杂度:O(N),N为field 的个数:
  • 返回值:字段列表。
  • 示例:

在这里插入图片描述

hvals

HVALS

  • 获取 hash 中的所有的值(value)。
  • 语法: HVALS key
  • 命令有效版本:2.0.0 之后
  • 时间复杂度:O(N),N为 field 的个数.
  • 返回值:所有的值。
  • 示例:

在这里插入图片描述

hgetall

HGETALL

  • 获取 hash 中的所有字段(field)以及对应的值(value)。
  • 语法: HGETALL key
  • 命令有效版本:2.0.0之后
  • 时间复杂度:O(N),N为field 的个数,
  • 返回值:字段和对应的值。
  • 示例:
    在这里插入图片描述

hmget

HMGET

  • 一次获取 hash 中多个字段的值。
  • 语法: HMGET key field [field ...]
  • 命令有效版本:2.0.0 之后
  • 时间复杂度:只查询一个元素为 0(1),查询多个元素为 O(N),N 为查询元素个数.
  • 返回值:字段对应的值或者 nil。
  • 示例:

在这里插入图片描述

在使用 HGETALL 时,如果哈希元素个数比较多,会存在阻塞 Redis 的可能。如果开发人员只需要获取部分 field,可以使用HMGET,如果一定要获取全部 field,可以尝试使用 HSCAN命令,该命令采用渐进式遍历哈希类型,HSCAN 会在后续介绍。

hlen

HLEN

  • 获取 hash 中的所有字段(field)的个数。
  • 语法: HLEN key
  • 命令有效版本:2.0.0 之后
  • 时间复杂度:O(1)
  • 返回值:字段个数。
  • 示例:

在这里插入图片描述

hsetnx

HSETNX

  • 在字段不存在的情况下,设置 hash 中的字段和值,如果存在就不会设置。
  • 语法: HSETNX key field value
  • 命令有效版本:2.0.0之后
  • 时间复杂度:0(1)
  • 返回值:1表示设置成功,0 表示失败。
  • 示例:

在这里插入图片描述

hincrby

HINCRBY

  • 将 hash 中字段对应的数值添加指定的值。
  • 语法: HINCRBY key field increment
  • 命令有效版本:2.0.0之后
  • 时间复杂度:O(1)
  • 返回值:该字段变化之后的值。
  • 示例:

在这里插入图片描述

hincrbyfloat

HINCRBYFLOAT

  • HINCRBY的浮点数版本。
  • 语法: HINCRBYFLOAT key field increment
  • 命令有效版本:2.6.0之后
  • 时间复杂度:0(1)
  • 返回值:该字段变化之后的值。
  • 示例:

在这里插入图片描述

hstrlen

HSTRLEN

  • 计算 value 的字符串长度
  • 语法:HSTRLEN key field
  • 返回值:字符串的长度
  • 示例:

在这里插入图片描述

三、命令小结

命令执⾏效果时间复杂度
hset key field value设置值O(1)
hget key field获取值O(1)
hdel key field [field…]删除 fieldO(k), k 是 field 个数
hlen key计算 field 个数O(1)
hgetall key获取所有的 field-valueO(k), k 是 field 个数
hmget批量获取 field-valueO(k), k 是 field 个数
hmset批量设置 field-value(注意:Redis 3.0.6 后使用 hset 替代)O(k), k 是 field 个数
hexists key field判断 field 是否存在O(1)
hkeys key获取所有的 fieldO(k), k 是 field 个数
hvals key获取所有的 valueO(k), k 是 field 个数
hsetnx key field value设置值,但必须在 field 不存在时才能设置成功O(1)
hincrby key field n对应 field-value + n(n 为整数)O(1)
hincrbyfloat key field n对应 field-value + n(n 为浮点数)O(1)
hstrlen key field计算 value 的字符串长度O(1)

注意:hmset 命令在 Redis 3.0.6 版本后被废弃,推荐使用 hset 或 hmset 的变种(逐个设置)来替代批量设置的操作。表格中仍列出 hmset 以供参考。

四、哈希内部编码方式

哈希的内部编码有两种:

  • ziplist(压缩列表):当哈希类型元素个数小于 hash-max-ziplist-entries 配置(默认 512 个)同时所有值都小于 hash-max-ziplist-value配置(默认 64字节)时,Redis 会使用 ziplist 作为哈希的内部实现,ziplist 使用更加紧凑的结构实现多个元素的连续存储,所以在节省内存方面比hashtable 更加优秀。
  • hashtable(哈希表):当哈希类型无法满足 ziplist的条件时,Redis 会使用 hashtable 作为哈希的内部实现,因为此时 ziplist 的读写效率会下降,而 hashtable 的读写时间复杂度为 O(1)。下面的示例演示了哈希类型的内部编码,以及响应的变化。
  1. 当 field 个数比较少且没有大的 value 时,内部编码为 ziplist:

在这里插入图片描述

listpack 是 Redis 5.0 引入的一个新的内部数据结构,用于替代和优化 ziplist,但在 Redis的官方文档和上下文中,哈希类型仍然使用 ziplist 或 hashtable 作为其内部编码的术语。如果你在使用 Redis 5.0或更高版本,那么哈希类型在内部可能会使用 listpack 来实现 ziplist 的功能,但这一细节通常对开发者是透明的。

  1. 当有 value 大于 64 字节时,内部编码会转换为 hashtable:

在这里插入图片描述
3. 当 field 个数超过 512 时,内部编码也会转换为 hashtable:
由于field个数太多,博主也懒得敲了,感兴趣的自己试试吧。

五、典型应用场景

图 2-16 为关系型数据表记录的两条用户信息,用户的属性表现为表的列,每条用户信息表现为行。如果映射关系表示这两个用户信息,则如图 2-17 所示。
在这里插入图片描述
在这里插入图片描述
相比于使用 JSON 格式的字符串缓存用户信息,哈希类型变得更加直观,并且在更新操作上变得更灵活。可以将每个用户的 id 定义为键后缀,多对 field-value 对应用户的各个属性,类似如下伪代码:

UserInfo getUserInfo(long uid) {// 根据 uid 得到 Redis 的键String key = "user:" + uid;// 尝试从 Redis 中获取对应的值userInfoMap = Redis 执行命令:hgetall key;// 如果缓存命中(hit)if (value != null) {// 将映射关系还原为对象形式UserInfo userInfo = 利用映射关系构建对象(userInfoMap);return userInfo;}// 如果缓存未命中(miss)// 从数据库中,根据 uid 获取用户信息UserInfo userInfo = MySQL 执行 SQL:select * from user_info where uid = <uid>// 如果表中没有 uid 对应的用户信息if (userInfo == null) {响应 404return null;}// 将缓存以哈希类型保存Redis 执行命令:hmset key name userInfo.name age userInfo.age city userInfo.city// 写入缓存,为了防止数据腐烂(rot),设置过期时间为 1 小时(3600 秒)Redis 执行命令:expire key 3600// 返回用户信息return userInfo;
}

但是需要注意的是哈希类型和关系型数据库有两点不同之处:

  1. 哈希类型是稀疏的,而关系型数据库是完全结构化的,例如哈希类型每个键可以有不同的field,而关系型数据库一旦添加新的列,所有行都要为其设置值,即使为 null,如图 2-18所示。
  2. 关系数据库可以做复杂的关系查询,而 Redis 去模拟关系型复杂查询,例如联表查询、聚合查询等
    基本不可能,维护成本高。

图 2-18 关系型数据库稀疏性

六、 字符串,序列化,哈希对比

截至目前为止,我们已经能够用三种方法缓存用户信息,下面给出三种方案的实现方法和优缺点分析。

  1. 原生字符串类型 —— 使用字符串类型,每个属性一个键。
set user:1:name James
set user:1:age 23
set user:1:city Beijing

优点:实现简单,针对个别属性变更也很灵活。
缺点:占用过多的键,内存占用量较大,同时用户信息在 Redis 中比较分散,缺少内聚性,所以这种方案基本没有实用性。

  1. 序列化字符串类型,例如 JSON 格式
set user:1 经过序列化后的用户对象字符串

优点:针对总是以整体作为操作的信息比较合适,编程也简单。同时,如果序列化方案选择合适,内存的使用效率很高。
缺点:本身序列化和反序列需要一定开销,同时如果总是操作个别属性则非常不灵活。

  1. 哈希类型
hmset user:1 name James age 23 city Beijing

优点:简单、直观、灵活。尤其是针对信息的局部变更或者获取操作。
缺点:需要控制哈希在 ziplist 和 hashtable 两种内部编码的转换,可能会造成内存的较大消耗。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428562.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CANopen开源库canfestival的移植

本文记录将CANopen开源库CANfestival移植到GD32F470单片机的过程。CANopen协议理解请参考博客&#xff1a;CANopen协议的理解-CSDN博客 CANfestival开源库下载链接 CSDN链接&#xff1a; https://download.csdn.net/download/heqiunong/89774627 官网链接&#xff1a;https:/…

智能BI项目第五期

本期主要内容 系统问题分析异步化业务流程分析线程池讲解&#xff08;入门 原理 实战&#xff09;系统异步化改造开发 1.系统问题分析 当系统面临大量用户请求时&#xff0c;我们后端的 AI 处理能力有限&#xff0c;例如服务器的内存、CPU、网络带宽等资源有限&#xff0c…

基于微信小程序的游泳馆管理系统--论文源码调试讲解

2 关键技术介绍 2.1 SSM框架 开发信息管理系统的主流框架是SSM&#xff08;Spring Spring MVC MyBatis&#xff09;&#xff0c;SSM框架web层使用Spring MVC框架&#xff0c;使传输前后端数据变得简单&#xff1b;对于业务层使用Spring作为轻量级控制反转和面向切面的容器框…

redis分布式锁(看门枸机制)

分布式锁确保在同一时间只有一个节点能获得对共享资源的独占访问权限&#xff0c;从而解决并发访问问题。 Redisson锁(简称看门狗) 它可以实现锁的延长&#xff0c;确保某个线程执行完才能让其他线程进行抢锁操作 引入看门狗机制后 如何使用&#xff1f; 1、引入依赖包 <…

Java数据结构专栏介绍

专栏导读 在软件工程的世界里&#xff0c;数据结构是构建高效、可靠程序的基石。"Java数据结构"专栏致力于为Java开发者提供一个全面、深入的学习平台&#xff0c;帮助他们掌握各种数据结构的原理、实现及其在Java中的应用。通过这个专栏&#xff0c;读者将能够提升…

【第34章】Spring Cloud之SkyWalking分布式日志

文章目录 前言一、准备1. 引入依赖 二、日志配置1. 打印追踪ID2. gRPC 导出 三、完整日志配置四、日志展示1. 前端2. 后端 总结 前言 前面已经完成了请求的链路追踪&#xff0c;这里我们通过SkyWalking来处理分布式日志&#xff1b; 场景描述&#xff1a;我们有三个服务消费者…

Hive企业级调优[3]—— Explain 查看执行计划

Explain 查看执行计划 Explain 执行计划概述 EXPLAIN 命令呈现的执行计划由一系列 Stage 组成。这些 Stage 之间存在依赖关系&#xff0c;每一个 Stage 可能对应一个 MapReduce Job 或者一个文件系统的操作等。如果某 Stage 对应了一个 MapReduce Job&#xff0c;则该 Job 在 …

OpenHarmony(鸿蒙南向开发)——小型系统内核(LiteOS-A)【内核通信机制】下

往期知识点记录&#xff1a; 鸿蒙&#xff08;HarmonyOS&#xff09;应用层开发&#xff08;北向&#xff09;知识点汇总 鸿蒙&#xff08;OpenHarmony&#xff09;南向开发保姆级知识点汇总~ 子系统开发内核 轻量系统内核&#xff08;LiteOS-M&#xff09; 轻量系统内核&#…

微信支付开发-后台统计工厂实现

一、数据库设计图 二、后端统计工厂逻辑 1、统计父抽象类 a、StatisticsHandle.php 2、统计工厂通道类 a、StatisticsFactory.php 3、查询实现类 a、答题统计(Answer.php) 三、后端统计工厂代码实现 1、统计父抽象类(StatisticsHandle.php) <?php /*** 统计父抽象类* Use…

VirtualBox 7.1.0 发布下载 - 开源跨平台虚拟化软件

VirtualBox 7.1.0 (macOS, Linux, Windows) - 开源跨平台虚拟化软件 Oracle VM VirtualBox 7 请访问原文链接&#xff1a;https://sysin.org/blog/virtualbox-7/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org 2024 年 9 月 …

Redis面试真题总结(三)

文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 什么是缓存雪崩&#xff1f;该如何解决&#xff1f; 缓存雪崩是指…

算法课习题汇总(2)

整数划分问题 将正整数n表示成一系列正整数之和&#xff0c;nn1n2…nk(n1>n2>…>nk,k>1)。正整数n的这种表示称为正整数n的划分。 思路&#xff1a; n表示待划分数&#xff0c;m表示最大减数。 #include<iostream> using namespace std;int q(int n, int…

面试题给图例举测试用例或测试点

目录 从功能测试的角度考虑&#xff1a; 从性能角度考虑&#xff1a; 从兼容性的角度考虑&#xff1a; 从自动化角度考虑&#xff1a; 从安全性角度考虑&#xff1a; 用户体验的角度测试&#xff1a; 面试通常会有技术和人事两种&#xff0c;侧重点不一样。 今天聊一下测…

Qt日志输出及QsLog日志库

目录 Qt日志输出及QsLog日志库日志输出格式化日志普通格式化条件格式化环境变量设置格式化日志输出位置日志输出对象信息禁用输出 QsLog日志库使用方法1. 将QsLog目录添加到项目中2. 配置CMakeLists.txt文件3. 配置.pro文件4. 日志记录器的配置5. 运行程序6. 启用行号和文件名C…

有奖直播 | onsemi IPM 助力汽车电气革命及电子化时代冷热管理

在全球汽车行业向电气化和智能化转型的浪潮中&#xff0c;功率管理技术的创新和应用成为了关键驱动力。作为全球领先的半导体解决方案供应商&#xff0c;onsemi&#xff08;安森美&#xff09;致力于通过其先进的智能功率模块&#xff08;IPM&#xff09;技术&#xff0c;推动汽…

[Linux#55][网络协议] 序列化与反序列化 | TcpCalculate为例

目录 1. 理解协议 1.1 结构化数据的传输 序列化与反序列化 代码感知&#xff1a; Request 类 1. 构造函数 2. 序列化函数&#xff1a;Serialize() 3. 反序列化函数&#xff1a;DeSerialize() 补充 4. 成员变量 Response 类 1. 构造函数 2. 序列化函数&#xff1a;…

JavaWeb - 5 - 前端工程化

一.前后端分离开发 前后端混合开发 缺点&#xff1a;沟通成本高&#xff0c;分工不明确&#xff0c;不便管理&#xff0c;不便维护拓展 前后端分离开发 当前最为主流的开发模式&#xff1a;前后端分离 前后端分离开发中很重要的是API接口文档&#xff08;如&#xff1a;YApi&…

胤娲科技:谷歌DeepMind祭出蛋白质设计新AI——癌症治疗迎来曙光

在科技的浩瀚星空中&#xff0c;DeepMind的“阿尔法”家族总是能带来令人瞩目的璀璨光芒。这一次&#xff0c;它们再次以惊人的姿态&#xff0c; 将AI的触角深入到了生命的微观世界——蛋白质设计领域&#xff0c;为我们描绘了一幅未来医疗的宏伟蓝图。 想象一下&#xff0c;一…

Scrapy爬虫实战——某瓣250

# 按照我个人的习惯&#xff0c;在一些需要较多的包作为基础支撑的项目里&#xff0c;习惯使用虚拟环境&#xff0c;因为这样能极大程度的减少出现依赖冲突的问题。依赖冲突就比如A、B、C三个库&#xff0c;A和B同时依赖于C&#xff0c;但是A需要的C库版本大于N&#xff0c;而B…

VUE3配置路由(超级详细)

第一步创建vue3的项目