【深度学习】(1)--神经网络

文章目录

  • 深度学习
  • 神经网络
    • 1. 感知器
    • 2. 多层感知器
      • 偏置
    • 3. 神经网络的构造
    • 4. 模型训练
      • 损失函数
  • 总结

深度学习

深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向。

在这里插入图片描述

从上方的内容包含结果,我们可以知道,在学习深度学习之前,我们还需要了解一下什么是神经网络。

神经网络

神经网络,我们可以将它类比为人类的神经元,由外界传递信息,产生神经冲动,传递电信号,做出行为的过程。

在这里插入图片描述

这是生物学上的体现,那么,在神经网络中是如何体现的呢?
在这里插入图片描述

由外界传入数据,然后通过“路径”抵达神经元,在每一条的“路径”上会有不同的w参数,与传入的数据进行计算。从而影响接收值:

在这里插入图片描述

在推导式中,每条“路径”上的信息传入神经元,然后对他们进行累加求和,接着经过特定的输出函数sigmoid函数输入,对结果进行分类。

神经网络的本质:通过参数与激活函数来拟合特征与目标之间的真实函数关系。但在一个神经网络的程序中,不需要神经元和线,本质上是矩阵的运算,实现一个神经网络最需要的是线性代数库。

1. 感知器

由两层神经元组成的神经网络–“感知器”(Perceptron),感知器只能线性划分数据。

在这里插入图片描述

对于这样简单的感知器,只能线性划分数据,因为对于神经元的结果,只有y =kx+b一层计算,只可以在二维空间画一条直线划分,这样的话,对于一些区域型的数据无法具体分类,比如:

在这里插入图片描述

对于这组数据的分类,是无法通过一条直线就让它们分开的,那该如何分类N呢?

我们得让分类的线弯曲,比如:

在这里插入图片描述

这样就将类别划分开了。可是,我们该怎样使这条“线”弯曲呢?通过多层感知器。

2. 多层感知器

多层感知器其实就是增加了一个中间层,即隐含层。而这,也就是神经网络可以做非线性分类的关键。

在这里插入图片描述

多层感知器同简单感知器的区别就是多加了1层运算,那这样我们的计算就变成了y=w1x1+w2x2+b,在一个二维图片中,这样的函数计算可以使“线”弯曲,从而实现了非线性分类。

偏置

在神经网络中需要默认增加偏置神经元(节点),这些节点是默认存在的。它本质上是一个只含有存储功能,且存储值永远为1的单元。在神经网络的每个层次中,除了输出层以外,都会含有这样一个偏置单元。

在这里插入图片描述

偏置节点没有输入(前一层中没有箭头指向它)。一般情况下,我们都不会明确画出偏置节点。

3. 神经网络的构造

在这里插入图片描述

神经网络从左到右分为输入层、隐含层、输出层。

需要记忆

  1. 设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定
    1. 输入层的节点数:与特征的维度匹配(特征数量)。
    2. 输出层的节点数:与目标的维度匹配(类别结果数量)。
    3. 中间层的节点数:目前业界没有完善的理论来指导这个决策。一般是根据经验来设置。
  2. 神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别;
  3. 结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。

4. 模型训练

模型训练的目的:使得参数尽可能的与真实的模型逼近。

具体做法:

  1. 首先给所有参数赋上随机值。我们使用这些随机生成的参数值,来预测训练数据中的样本。
  2. 计算预测值为yp,真实值为y。那么,定义一个损失值loss,损失值用于判断预测的结果和真实值的误差,误差越小越好。

损失函数

  1. 均方差损失函数

对真实值与预测值作差然后做平方,计算每一条数据的差值平方加起来,然后再除以数据的条数即可得到损失值。

在这里插入图片描述

  1. 多分类的情况下,交叉熵损失函数

运算过程,将一组数据传入:

在这里插入图片描述

公式:

在这里插入图片描述

总结

本篇介绍了:

  1. 神经网络的构造
  2. 神经网络的运行过程
  3. 感知器

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428614.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】解锁系统编程奥秘,高效文件IO的实战技巧

文件 1. 知识铺垫2. C文件I/O2.1. C文件接口2.2 fopen()与重定向2.3. 当前路径2.4. stdin、stdout、stderr 3. 系统文件I/O3.1. 前言3.2. open3.2.1. flags</h3>3.2.2. mode</h3>3.2.3. 返回值fd 3.3. write</h2>3.4. read3.5. close</h2>3.6. lseek&l…

面试经典150题——删除有序数组中的重复项

目录 题目链接&#xff1a;26. 删除有序数组中的重复项 - 力扣&#xff08;LeetCode&#xff09; 题目描述 判题标准: 示例 提示&#xff1a; 解法一&#xff1a;双指针 Java写法&#xff1a; 运行时间 C写法&#xff1a; 运行时间 论屎山代码是如何出现的 时间复杂…

感知笔记2:ROS 视觉 - 沿线行走

如何在 ROS 中使用 OpenCV如何跟踪线路如何根据颜色查找不同元素跟踪多条路径并做出决定为线路跟踪创建基本的 PID 在本章中&#xff0c;您将学习如何使用 ROS 中最基本、最强大的感知工具&#xff1a;OpenCV。 OpenCV 是最广泛、最完整的图像识别库。有了​​它&#xff0c;…

Docker实操:安装MySQL5.7详解(保姆级教程)

介绍 Docker 中文网址: https://www.dockerdocs.cn Docker Hub官方网址&#xff1a;https://hub.docker.com Docker Hub中MySQL介绍&#xff1a;https://hub.docker.com/_/mysql ​ 切换到“Tags”页面&#xff0c;复制指定的MySQL版本拉取命令&#xff0c;例如 &#xff1a…

uv-ui组件的使用——自定义输入框的样式

一、官网的使用 二、自定义修改样式 我是在小程序中使用此组件 想要自定义修改样式的话&#xff0c;需要placeholderClass加上 placeholderStyle配合使用 tip1&#xff1a;单独使用placeholderClass&#xff0c;他只会第一次渲染时生效&#xff0c;输入文字再清除后就不生效…

十六,Spring Boot 整合 Druid 以及使用 Druid 监控功能

十六&#xff0c;Spring Boot 整合 Druid 以及使用 Druid 监控功能 文章目录 十六&#xff0c;Spring Boot 整合 Druid 以及使用 Druid 监控功能1. Druid 的基本介绍2. 准备工作&#xff1a;3. Druid 监控功能3.1 Druid 监控功能 —— Web 关联监控3.2 Druid 监控功能 —— SQL…

(蓝桥杯)STM32G431RBT6(TIM4-PWM)

一、基础配置 这个auto-reload preload是自动重装载值&#xff0c;因为我们想让他每改变一个占空比&#xff0c;至少出现一次周期 Counter Period(Autoreload Regisiter)这个设值为10000&#xff0c;那么就相当于它的周期是10000 脉冲宽度可以设置为占周期的一半&#xff0c;那…

Python酷库之旅-第三方库Pandas(123)

目录 一、用法精讲 546、pandas.DataFrame.ffill方法 546-1、语法 546-2、参数 546-3、功能 546-4、返回值 546-5、说明 546-6、用法 546-6-1、数据准备 546-6-2、代码示例 546-6-3、结果输出 547、pandas.DataFrame.fillna方法 547-1、语法 547-2、参数 547-3、…

opencv图像透视处理

引言 在图像处理与计算机视觉领域&#xff0c;透视变换&#xff08;Perspective Transformation&#xff09;是一种重要的图像校正技术&#xff0c;它允许我们根据图像中已知的四个点&#xff08;通常是矩形的四个角&#xff09;和目标位置的四个点&#xff0c;将图像从一个视…

Ubuntu 与Uboot网络共享资源

1、NFS 1.1 Ubuntu 下 NFS 服务开启 sudo apt-get install nfs-kernel-server rpcbind 等待安装完成&#xff0c;安装完成以后在用户根目录下创建一个名为“Linux”的文件夹&#xff0c;以后所有 的东西都放到这个“Linux”文件夹里面&#xff0c;在“Linux”文件夹里面新建…

[Simpfun游戏云1]搭建MC Java+基岩互通生存游戏服务器

众所周知&#xff0c;MC有多个客户端&#xff0c;像常见的比如Java Edition和基岩等&#xff0c;这就导致&#xff0c;比如我知道一个超级好玩的JE服务器&#xff0c;但我又想使用基岩版来玩&#xff0c;肯定是不行的&#xff0c;因为通讯协议不一样。 这就有一些人才发明了多…

搜索引擎onesearch3实现解释和升级到Elasticsearch v8系列(四)-搜索

搜索 搜索内容比较多&#xff0c;onesearch分成两部分&#xff0c;第一部分&#xff0c;Query构建&#xff0c;其中包括搜索词设置&#xff0c;设置返回字段&#xff0c;filter&#xff0c;高亮&#xff1b;第二部分分页和排序。第一部分是映射引擎负责&#xff0c;映射通用表…

常见中间件漏洞靶场(tomcat)

1.CVE-2017-12615 开启环境 查看端口 查看IP 在哥斯拉里生成一个木马 访问页面修改文件后缀和文件内容 放包拿去连接 2.后台弱⼝令部署war包 打开环境 将前边的1.jsp压缩成1.zip然后改名为1.war 访问页面进行上传 在拿去连接 3.CVE-2020-1938 打开环境 访问一下 来到kali …

错题集锦之C语言

直接寻址和立即寻址 算法的又穷性是指算法程序的运行时间是有限的 未经赋值的全局变量值不确定 集成测试是为了发现概要设计的错误 自然连接要求两个关系中进行比较的是相同的属性&#xff0c;并且进行等值连接&#xff0c;在结果中还要把重复的属性列去掉 赋值运算符 赋值…

【计算机网络篇】电路交换,报文交换,分组交换

本文主要介绍计算机网络中的电路交换&#xff0c;报文交换&#xff0c;分组交换&#xff0c;文中的内容是我认为的重点内容&#xff0c;并非所有。参考的教材是谢希仁老师编著的《计算机网络》第8版。跟学视频课为河南科技大学郑瑞娟老师所讲计网。 目录 &#x1f3af;一.划分…

无线安全(WiFi)

免责声明:本文仅做分享!!! 目录 WEP简介 WPA简介 安全类型 密钥交换 PMK PTK 4次握手 WPA攻击原理 网卡选购 攻击姿态 1-暴力破解 脚本工具 字典 2-Airgeddon 破解 3-KRACK漏洞 4-Rough AP 攻击 5-wifi钓鱼 6-wifite 其他 WEP简介 WEP是WiredEquivalentPri…

浅谈vue2.0与vue3.0的区别(整理十六点)

目录 1. 实现数据响应式的原理不同 2. 生命周期不同 3. vue 2.0 采用了 option 选项式 API&#xff0c;vue 3.0 采用了 composition 组合式 API 4. 新特性编译宏 5. 父子组件间双向数据绑定 v-model 不同 6. v-for 和 v-if 优先级不同 7. 使用的 diff 算法不同 8. 兄弟组…

2024年及未来:构筑防御通胀的堡垒,保护您的投资

随着全球经济的波动和不确定性&#xff0c;通货膨胀已成为投资者不得不面对的现实问题。通胀会侵蚀货币的购买力&#xff0c;从而影响投资的实际回报。因此&#xff0c;制定有效的策略来保护投资免受通胀影响&#xff0c;对于确保资产的长期增值至关重要。在2024年及未来&#…

nginx架构篇(三)

文章目录 一、Nginx实现服务器端集群搭建1.1 Nginx与Tomcat部署1. 环境准备(Tomcat)2. 环境准备(Nginx) 1.2. Nginx实现动静分离1.2.1. 需求分析1.2.2. 动静实现步骤 1.3. Nginx实现Tomcat集群搭建1.4. Nginx高可用解决方案1.4.1. Keepalived1.4.2. VRRP介绍1.4.3. 环境搭建环境…

口碑最好的头戴式耳机是哪些?高品质头戴式耳机对比测评揭晓

头戴式耳机以其出色的音质表现和舒适的佩戴体验&#xff0c;成为了音乐爱好者和日常通勤用户的热门选择。而在众多品牌和型号中&#xff0c;口碑最好的头戴式耳机是哪些&#xff1f;面对市场上丰富的选择&#xff0c;找到一款音质优良、佩戴舒适且性价比高的耳机并不容易。今天…