Python酷库之旅-第三方库Pandas(123)

目录

一、用法精讲

546、pandas.DataFrame.ffill方法

546-1、语法

546-2、参数

546-3、功能

546-4、返回值

546-5、说明

546-6、用法

546-6-1、数据准备

546-6-2、代码示例

546-6-3、结果输出

547、pandas.DataFrame.fillna方法

547-1、语法

547-2、参数

547-3、功能

547-4、返回值

547-5、说明

547-6、用法

547-6-1、数据准备

547-6-2、代码示例

547-6-3、结果输出

548、pandas.DataFrame.interpolate方法

548-1、语法

548-2、参数

548-3、功能

548-4、返回值

548-5、说明

548-6、用法

548-6-1、数据准备

548-6-2、代码示例

548-6-3、结果输出

549、pandas.DataFrame.isna方法

549-1、语法

549-2、参数

549-3、功能

549-4、返回值

549-5、说明

549-6、用法

549-6-1、数据准备

549-6-2、代码示例

549-6-3、结果输出

550、pandas.DataFrame.isnull方法

550-1、语法

550-2、参数

550-3、功能

550-4、返回值

550-5、说明

550-6、用法

550-6-1、数据准备

550-6-2、代码示例

550-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

546、pandas.DataFrame.ffill方法
546-1、语法
# 546、pandas.DataFrame.ffill方法
pandas.DataFrame.ffill(*, axis=None, inplace=False, limit=None, limit_area=None, downcast=_NoDefault.no_default)
Fill NA/NaN values by propagating the last valid observation to next valid.Parameters:
axis{0 or ‘index’} for Series, {0 or ‘index’, 1 or ‘columns’} for DataFrame
Axis along which to fill missing values. For Series this parameter is unused and defaults to 0.inplacebool, default False
If True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame).limitint, default None
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.limit_area{None, ‘inside’, ‘outside’}, default None
If limit is specified, consecutive NaNs will be filled with this restriction.None: No fill restriction.‘inside’: Only fill NaNs surrounded by valid values (interpolate).‘outside’: Only fill NaNs outside valid values (extrapolate).New in version 2.2.0.downcastdict, default is None
A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible).Deprecated since version 2.2.0.Returns:
Series/DataFrame or None
Object with missing values filled or None if inplace=True.
546-2、参数

546-2-1、axis(可选,默认值为None){0或'index',1或'columns'},确定填充操作的方向,0或'index'表示沿着行(向下填充),1或'columns'表示沿着列(向右填充),如果为None,则会根据轴的方向自动选择。

546-2-2、inplace(可选,默认值为False)布尔值,是否在原地修改DataFrame,如果为True,操作将在原始DataFrame上进行,而不会返回新的DataFrame;如果为False,则返回一个新的DataFrame,原始DataFrame不变。

546-2-3、limit(可选,默认值为None)整数,指定最大填充数量,填充过程将限制为最多填充limit个缺失值。

546-2-4、limit_area(可选,默认值为None)None或类似于DataFrame的对象,指定一个区域,该区域内的缺失值才会被填充,如果指定,将仅在这个区域内执行前向填充。

546-2-5、downcast(可选){'int', 'float', 'string', 'boolean'}或None,指定数据类型的向下转型,若指定此参数,则会尝试将数据转换为更小的数据类型,前提是数据类型允许。

546-3、功能

        用前一个有效值填充缺失值,在许多数据处理和分析应用中,缺失值是常见的问题,前向填充可以帮助将数据完整化,便于后续分析。

546-4、返回值

        返回值是一个填充后的DataFrame,如果inplace=True,则返回值为None,原始DataFrame被直接修改。

546-5、说明

        无

546-6、用法
546-6-1、数据准备
546-6-2、代码示例
# 546、pandas.DataFrame.ffill方法
import pandas as pd
import numpy as np
# 创建一个示例DataFrame
df = pd.DataFrame({'A': [1, np.nan, 3],'B': [np.nan, 2, np.nan],'C': [1, 2, 3]
})
# 使用前向填充
filled_df = df.ffill()
print(filled_df)
546-6-3、结果输出
# 546、pandas.DataFrame.ffill方法
#      A    B  C
# 0  1.0  NaN  1
# 1  1.0  2.0  2
# 2  3.0  2.0  3
547、pandas.DataFrame.fillna方法
547-1、语法
# 547、pandas.DataFrame.fillna方法
pandas.DataFrame.fillna(value=None, *, method=None, axis=None, inplace=False, limit=None, downcast=_NoDefault.no_default)
Fill NA/NaN values using the specified method.Parameters:
valuescalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list.method{‘backfill’, ‘bfill’, ‘ffill’, None}, default None
Method to use for filling holes in reindexed Series:ffill: propagate last valid observation forward to next valid.backfill / bfill: use next valid observation to fill gap.Deprecated since version 2.1.0: Use ffill or bfill instead.axis{0 or ‘index’} for Series, {0 or ‘index’, 1 or ‘columns’} for DataFrame
Axis along which to fill missing values. For Series this parameter is unused and defaults to 0.inplacebool, default False
If True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame).limitint, default None
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.downcastdict, default is None
A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible).Deprecated since version 2.2.0.Returns:
Series/DataFrame or None
Object with missing values filled or None if inplace=True.
547-2、参数

547-2-1、value(可选,默认值为None)scalar, dict, Series或 DataFrame,指定填充缺失值的值,可以是单个值、一组值(字典或Series)或另一个DataFrame,如果为None,则需要同时指定method。

547-2-2、method(可选,默认值为None){'backfill','bfill','pad','ffill'},用于指定填充缺失值的方法:

  • pad或ffill:前向填充,使用前一个有效值填充。
  • backfill或bfill:后向填充,使用后一个有效值填充。

547-2-3、axis(可选,默认值为None){0或'index',1或'columns'},确定填充操作的方向,0或'index'表示沿着行(纵向填充),1或'columns'表示沿着列(横向填充),如果为None,则根据数据的形状自动选择。

547-2-4、inplace(可选,默认值为False)布尔值,是否在原地修改DataFrame,如果为True,填充将在原始DataFrame上完成,并返回None;如果为False,则返回一个新的DataFrame,原始DataFrame保持不变。

547-2-5、limit(可选,默认值为None)整数,指定在填充操作中最多填充的缺失值数量,这适用于前向或后向填充方法。

547-2-6、downcast(可选){'int','float','string','boolean'}或None,指定数据类型的向下转型,若是否将填充后的数据转换为更小的数据类型,前提是数据类型允许。

547-3、功能

        用指定的值或方法替代缺失值,在数据处理中,缺失值常常需要被合理填充,以便进一步分析和建模。

547-4、返回值

        返回值是一个填充后的DataFrame,如果inplace=True,则返回值为None,原始DataFrame会被直接修改。

547-5、说明

        无

547-6、用法
547-6-1、数据准备
547-6-2、代码示例
# 547、pandas.DataFrame.fillna方法
import pandas as pd
import numpy as np
# 创建一个示例DataFrame
df = pd.DataFrame({'A': [1, np.nan, 3],'B': [np.nan, 2, np.nan],'C': [1, 2, 3]
})
# 使用填充指定值
filled_df1 = df.fillna(value=0)
# 使用前向填充
filled_df2 = df.fillna(method='ffill')
print("使用指定值填充:")
print(filled_df1)
print("\n使用前向填充:")
print(filled_df2)
547-6-3、结果输出
# 547、pandas.DataFrame.fillna方法
# 使用指定值填充:
#      A    B  C
# 0  1.0  0.0  1
# 1  0.0  2.0  2
# 2  3.0  0.0  3
# 
# 使用前向填充:
#      A    B  C
# 0  1.0  NaN  1
# 1  1.0  2.0  2
# 2  3.0  2.0  3
548、pandas.DataFrame.interpolate方法
548-1、语法
# 548、pandas.DataFrame.interpolate方法
pandas.DataFrame.interpolate(method='linear', *, axis=0, limit=None, inplace=False, limit_direction=None, limit_area=None, downcast=_NoDefault.no_default, **kwargs)
Fill NaN values using an interpolation method.Please note that only method='linear' is supported for DataFrame/Series with a MultiIndex.Parameters:
methodstr, default ‘linear’
Interpolation technique to use. One of:‘linear’: Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes.‘time’: Works on daily and higher resolution data to interpolate given length of interval.‘index’, ‘values’: use the actual numerical values of the index.‘pad’: Fill in NaNs using existing values.‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’: Passed to scipy.interpolate.interp1d, whereas ‘spline’ is passed to scipy.interpolate.UnivariateSpline. These methods use the numerical values of the index. Both ‘polynomial’ and ‘spline’ require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=5). Note that, slinear method in Pandas refers to the Scipy first order spline instead of Pandas first order spline.‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’, ‘akima’, ‘cubicspline’: Wrappers around the SciPy interpolation methods of similar names. See Notes.‘from_derivatives’: Refers to scipy.interpolate.BPoly.from_derivatives.axis{{0 or ‘index’, 1 or ‘columns’, None}}, default None
Axis to interpolate along. For Series this parameter is unused and defaults to 0.limitint, optional
Maximum number of consecutive NaNs to fill. Must be greater than 0.inplacebool, default False
Update the data in place if possible.limit_direction{{‘forward’, ‘backward’, ‘both’}}, Optional
Consecutive NaNs will be filled in this direction.If limit is specified:
If ‘method’ is ‘pad’ or ‘ffill’, ‘limit_direction’ must be ‘forward’.If ‘method’ is ‘backfill’ or ‘bfill’, ‘limit_direction’ must be ‘backwards’.If ‘limit’ is not specified:
If ‘method’ is ‘backfill’ or ‘bfill’, the default is ‘backward’else the default is ‘forward’raises ValueError if
limit_direction
is ‘forward’ or ‘both’ and
method is ‘backfill’ or ‘bfill’.raises ValueError if
limit_direction
is ‘backward’ or ‘both’ and
method is ‘pad’ or ‘ffill’.limit_area{{None, ‘inside’, ‘outside’}}, default None
If limit is specified, consecutive NaNs will be filled with this restriction.None: No fill restriction.‘inside’: Only fill NaNs surrounded by valid values (interpolate).‘outside’: Only fill NaNs outside valid values (extrapolate).downcastoptional, ‘infer’ or None, defaults to None
Downcast dtypes if possible.Deprecated since version 2.1.0.``**kwargs``optional
Keyword arguments to pass on to the interpolating function.Returns:
Series or DataFrame or None
Returns the same object type as the caller, interpolated at some or all NaN values or None if inplace=True.
548-2、参数

548-2-1、method(可选,默认值为'linear')字符串,指定插值的方法,常用的方法包括:

  • 'linear':线性插值(默认)。
  • 'time':时间序列插值,仅适用于索引为时间戳的情况下。
  • 'index':根据索引值进行插值。
  • 其他插值方法如'nearest'、'polynomial'、'spline'等。

548-2-2、axis(可选,默认值为0){0或'index',1或'columns'},指定插值操作的方向,0或'index'表示沿着行进行插值,1或'columns'表示沿着列进行插值。

548-2-3、limit(可选,默认值为None)整数,指定在插值操作中最多插值的缺失值数量,这可以限制插值的范围。

548-2-4、inplace(可选,默认值为False)布尔值,是否在原地修改DataFrame,如果为True,插值将在原始DataFrame上完成并返回None;如果为False,则返回一个新的DataFrame,原始DataFrame保持不变。

548-2-5、limit_direction(可选,默认值为None){None, 'forward', 'backward'},指定插值的方向,'forward'表示只执行向前填充,'backward'表示只执行向后填充,如果为None,默认为两者都可。

548-2-6、limit_area(可选,默认值为None){None, 'inside', 'outside', 'both'},指定插值的区域,'inside'表示仅在内侧插值,'outside'表示仅在外侧插值,'both'表示在两者范围内插值。

548-2-7、downcast(可选){'int','float','string','boolean'}或None,指定数据类型的向下转型,若是否将插值后的数据转换为更小的数据类型,前提是数据类型允许。

548-2-8、**kwargs(可选)其他额外的关键字参数,为后续扩展功能做预留。

548-3、功能

        填充缺失值,通过插值计算在已有数据点之间估算缺失值,这在处理时间序列数据或一般情况下的数据填充时非常有用,可以保持数据的连续性。

548-4、返回值

        返回值是一个填充后的DataFrame,如果inplace=True,则返回值为None,原始DataFrame会被直接修改。

548-5、说明

        无

548-6、用法
548-6-1、数据准备
548-6-2、代码示例
# 548、pandas.DataFrame.interpolate方法
import pandas as pd
import numpy as np
# 创建一个示例DataFrame
df = pd.DataFrame({'A': [1, np.nan, 3, np.nan, 5],'B': [np.nan, 2, 3, 4, 5]
})
# 使用线性插值填充缺失值
interpolated_df1 = df.interpolate(method='linear')
print("线性插值填充结果:")
print(interpolated_df1)
548-6-3、结果输出
# 548、pandas.DataFrame.interpolate方法
# 线性插值填充结果:
#      A    B
# 0  1.0  NaN
# 1  2.0  2.0
# 2  3.0  3.0
# 3  4.0  4.0
# 4  5.0  5.0
549、pandas.DataFrame.isna方法
549-1、语法
# 549、pandas.DataFrame.isna方法
pandas.DataFrame.isna()
Detect missing values.Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).Returns:
DataFrame
Mask of bool values for each element in DataFrame that indicates whether an element is an NA value.
549-2、参数

        无

549-3、功能

        返回一个布尔型的DataFrame,与原始DataFrame具有相同的形状,布尔值表示数据是否为缺失值,缺失值(NaN)会被标记为True,而非缺失值会被标记为False。

549-4、返回值

        返回一个与原始DataFrame形状相同的布尔型DataFrame,如果某个单元格的值为缺失(如NaN),对应的位置将为True,否则为False。

549-5、说明

        无

549-6、用法
549-6-1、数据准备
549-6-2、代码示例
# 549、pandas.DataFrame.isna方法
import pandas as pd
import numpy as np
# 创建一个示例DataFrame
df = pd.DataFrame({'A': [1, np.nan, 3],'B': [4, 5, np.nan],'C': [np.nan, np.nan, 9]
})
# 检测缺失值
na_df = df.isna()
print("缺失值检测结果:")
print(na_df)
549-6-3、结果输出
# 549、pandas.DataFrame.isna方法
# 缺失值检测结果:
#        A      B      C
# 0  False  False   True
# 1   True  False   True
# 2  False   True  False
550、pandas.DataFrame.isnull方法
550-1、语法
# 550、pandas.DataFrame.isnull方法
pandas.DataFrame.isnull()
DataFrame.isnull is an alias for DataFrame.isna.Detect missing values.Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).Returns:
DataFrame
Mask of bool values for each element in DataFrame that indicates whether an element is an NA value.
550-2、参数

        无

550-3、功能

        返回一个与原始DataFrame同样形状的布尔型DataFrame,其中每个单元格指示该位置的值是否为缺失值,缺失值(NaN)将被标记为True,非缺失值将被标记为 False

550-4、返回值

        返回一个布尔型DataFrame,形状与原始DataFrame相同。

550-5、说明

        无

550-6、用法
550-6-1、数据准备
550-6-2、代码示例
# 550、pandas.DataFrame.isnull方法
import pandas as pd
import numpy as np
# 创建一个示例DataFrame
df = pd.DataFrame({'A': [1, np.nan, 3],'B': [4, 5, np.nan],'C': [np.nan, np.nan, 9]
})
# 检测缺失值
null_df = df.isnull()
print("缺失值检测结果:")
print(null_df)
550-6-3、结果输出
# 550、pandas.DataFrame.isnull方法
# 缺失值检测结果:
#        A      B      C
# 0  False  False   True
# 1   True  False   True
# 2  False   True  False

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428604.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv图像透视处理

引言 在图像处理与计算机视觉领域,透视变换(Perspective Transformation)是一种重要的图像校正技术,它允许我们根据图像中已知的四个点(通常是矩形的四个角)和目标位置的四个点,将图像从一个视…

Ubuntu 与Uboot网络共享资源

1、NFS 1.1 Ubuntu 下 NFS 服务开启 sudo apt-get install nfs-kernel-server rpcbind 等待安装完成,安装完成以后在用户根目录下创建一个名为“Linux”的文件夹,以后所有 的东西都放到这个“Linux”文件夹里面,在“Linux”文件夹里面新建…

[Simpfun游戏云1]搭建MC Java+基岩互通生存游戏服务器

众所周知,MC有多个客户端,像常见的比如Java Edition和基岩等,这就导致,比如我知道一个超级好玩的JE服务器,但我又想使用基岩版来玩,肯定是不行的,因为通讯协议不一样。 这就有一些人才发明了多…

搜索引擎onesearch3实现解释和升级到Elasticsearch v8系列(四)-搜索

搜索 搜索内容比较多,onesearch分成两部分,第一部分,Query构建,其中包括搜索词设置,设置返回字段,filter,高亮;第二部分分页和排序。第一部分是映射引擎负责,映射通用表…

常见中间件漏洞靶场(tomcat)

1.CVE-2017-12615 开启环境 查看端口 查看IP 在哥斯拉里生成一个木马 访问页面修改文件后缀和文件内容 放包拿去连接 2.后台弱⼝令部署war包 打开环境 将前边的1.jsp压缩成1.zip然后改名为1.war 访问页面进行上传 在拿去连接 3.CVE-2020-1938 打开环境 访问一下 来到kali …

错题集锦之C语言

直接寻址和立即寻址 算法的又穷性是指算法程序的运行时间是有限的 未经赋值的全局变量值不确定 集成测试是为了发现概要设计的错误 自然连接要求两个关系中进行比较的是相同的属性,并且进行等值连接,在结果中还要把重复的属性列去掉 赋值运算符 赋值…

【计算机网络篇】电路交换,报文交换,分组交换

本文主要介绍计算机网络中的电路交换,报文交换,分组交换,文中的内容是我认为的重点内容,并非所有。参考的教材是谢希仁老师编著的《计算机网络》第8版。跟学视频课为河南科技大学郑瑞娟老师所讲计网。 目录 🎯一.划分…

无线安全(WiFi)

免责声明:本文仅做分享!!! 目录 WEP简介 WPA简介 安全类型 密钥交换 PMK PTK 4次握手 WPA攻击原理 网卡选购 攻击姿态 1-暴力破解 脚本工具 字典 2-Airgeddon 破解 3-KRACK漏洞 4-Rough AP 攻击 5-wifi钓鱼 6-wifite 其他 WEP简介 WEP是WiredEquivalentPri…

浅谈vue2.0与vue3.0的区别(整理十六点)

目录 1. 实现数据响应式的原理不同 2. 生命周期不同 3. vue 2.0 采用了 option 选项式 API,vue 3.0 采用了 composition 组合式 API 4. 新特性编译宏 5. 父子组件间双向数据绑定 v-model 不同 6. v-for 和 v-if 优先级不同 7. 使用的 diff 算法不同 8. 兄弟组…

2024年及未来:构筑防御通胀的堡垒,保护您的投资

随着全球经济的波动和不确定性,通货膨胀已成为投资者不得不面对的现实问题。通胀会侵蚀货币的购买力,从而影响投资的实际回报。因此,制定有效的策略来保护投资免受通胀影响,对于确保资产的长期增值至关重要。在2024年及未来&#…

nginx架构篇(三)

文章目录 一、Nginx实现服务器端集群搭建1.1 Nginx与Tomcat部署1. 环境准备(Tomcat)2. 环境准备(Nginx) 1.2. Nginx实现动静分离1.2.1. 需求分析1.2.2. 动静实现步骤 1.3. Nginx实现Tomcat集群搭建1.4. Nginx高可用解决方案1.4.1. Keepalived1.4.2. VRRP介绍1.4.3. 环境搭建环境…

口碑最好的头戴式耳机是哪些?高品质头戴式耳机对比测评揭晓

头戴式耳机以其出色的音质表现和舒适的佩戴体验,成为了音乐爱好者和日常通勤用户的热门选择。而在众多品牌和型号中,口碑最好的头戴式耳机是哪些?面对市场上丰富的选择,找到一款音质优良、佩戴舒适且性价比高的耳机并不容易。今天…

美畅物联丨技术前沿探索:H.265编码与畅联云平台JS播放器的融合应用

一、H.265 编码:视频压缩技术的重大变革 H.265,即被熟知为高效视频编码(HEVC,High Efficiency Video Coding),由国际电信联盟电信标准化部门视频编码专家组(ITU-T VCEG)与国际标准化…

俄罗斯OZON新生儿产品好不好卖,OZON新生儿产品

Top1 遥控水球坦克 Танк на радиоуправлении стреляющий орбизами PANAWEALTH 商品id:1384249985 月销量:692 欢迎各位OZON卖家朋友点击这里选品: 👉 D。DDqbt。COm/74rD 遥控射击水…

Java中Set的巧妙用法---查找重复元素/去重/排序

目录 1. Set特性: 3. TreeSet 3.1定制排序(比较器排序) 3.2自然排序: 4. LinkedHashSet 在日常开发中不可避免会遇到需要去重,或者查找重复元素,下面给介绍一种效率比较高的方法,时间复杂度…

Git使用教程-将idea本地文件配置到gitte上的保姆级别教程

🤹‍♀️潜意识起点:个人主页 🎙座右铭:得之坦然,失之淡然。 💎擅长领域:前端 是的,我需要您的: 🧡点赞❤️关注💙收藏💛 是我持…

weblogic CVE-2018-2894 靶场攻略

漏洞描述 Weblogic Web Service Test Page中⼀处任意⽂件上传漏洞,Web Service Test Page 在 "⽣产模式"下默认不开启,所以该漏洞有⼀定限制。 漏洞版本 weblogic 10.3.6.0 weblogic 12.1.3.0 weblogic 12.2.1.2 28 weblogic 12.2.1.3 …

传统美业通过小魔推短视频矩阵系统,实现逆势增长?

许多美甲店在经营过程中常常陷入一个误区:他们认为自己缺少的是客户,但实际上,他们真正缺少的是有效的营销策略,美甲店经营者普遍面临的两大难题包括: 1. 高客户流失率: 据研究显示,约70%的顾…

初识linux(2)

接着上篇的初识linux(1)来接着说没看过的可以去看看 cp指令 语法:cp [选项] 源文件或目录 目标文件或目录 功能: 复制文件或目录 说明: cp指令用于复制文件或目录,如同时指定两个以上的文件或目录,且最后的目的地是一个已经存在的目录&#…

Python和C++及R相关系数数学统计学可视化和神经模型及评估指标

🎯要点 较少统计样本显著性评估和变量关系梳理功能磁共振成像一致性分析检测非单调关联性结构随机变量动力学相关性热图和矩阵图基因疫苗非线性变量相关性 Python相关矩阵 相关矩阵 n n n 个随机变量 X 1 , … , X n X_1, \ldots, X_n X1​,…,Xn​ 的相关矩阵…