一文入门生成式AI(理解ChatGPT的原理)

一、什么是生成式AI?

以ChatGPT为代表的生成式AI,是对已有的数据和知识进行向量化的归纳,总结出数据的联合概率。从而在生成内容时,根据用户需求,结合关联字词的概率生成新的内容

可以这么联想,ChatGPT就是一个词语接龙的机器,他会根据你给出的关键词,自动生成关键词的下一个最有可能衔接的词语。比如你说,“世界上最高的山”,ChatGPT就会回答“喜马拉雅山”。

二、怎么得到一个大模型?

大模型需要:算力、数据/存力、算法这三大要素。

算力:即需要GPU、NPU这些硬件进行训练。

数据/存力:生成式AI需要处理和存储大量的数据。以GPT-3为例,光是训练参数就达到了1750亿个,训练数据达到45TB,每天会产生45亿字内容。

算法:生成式AI的主要算法是深度学习。从仿生学的角度,人类希望AI能够模仿人脑的运行机制,对知识进行思考推理——这就是通常所说的深度学习。

三、算法

为了实现深度学习,学者们提出了大量的神经网络架构:

先看三个经典的:

  • 深度神经网络(DNN)是最普遍的神经网络架构,但是随着数据对于网路架构的要求越来越复杂,这种方法逐渐有些吃力。
  • 卷积神经网络(CNN)是一种专门为处理图像数据而设计的神经网络架构,能够有效地处理图像数据,但是需要对输入数据进行复杂的预处理。
  • 循环神经网络(RNN)架构成为处理序列数据的常用方法。

(1)Transformer架构

由于RNN在处理长序列时容易遇到梯度消失和模型退化问题,著名的Transformer算法被提出。

Transformer架构:是目前文本生成领域的主流架构,GPT、llama等LLM(大语言模型)都是基于Transformer实现了卓越的性能。

Transformer架构:主要由输入部分(输入输出嵌入与位置编码)、多层编码器、多层解码器以及输出部分(输出线性层与Softmax)四大部分组成。

  • (1)输入部分:

  • 源文本嵌入层:将源文本中的词汇数字表示转换为向量表示,捕捉词汇间的关系。

  • 位置编码器:为输入序列的每个位置生成位置向量,以便模型能够理解序列中的位置信息。

  • 目标文本嵌入层(在解码器中使用):将目标文本中的词汇数字表示转换为向量表示。

  • (2)编码器部分:

  • 由N个编码器层堆叠而成。

  • 每个编码器层由两个子层连接结构组成:第一个子层是一个多头自注意力子层,第二个子层是一个前馈全连接子层。每个子层后都接有一个规范化层和一个残差连接。

  • (3)解码器部分:

  • 由N个解码器层堆叠而成。

  • 每个解码器层由三个子层连接结构组成:第一个子层是一个带掩码的多头自注意力子层,第二个子层是一个多头注意力子层(编码器到解码器),第三个子层是一个前馈全连接子层。每个子层后都接有一个规范化层和一个残差连接。

  • (4)输出部分:

  • 线性层:将解码器输出的向量转换为最终的输出维度。

  • Softmax层:将线性层的输出转换为概率分布,以便进行最终的预测。

(2)训练

目前有两种训练方式:预训练和SFT(有监督微调)

  • 预训练:是指将一个大型、通用的数据集作为知识喂给AI进行初步学习。经过预训练的模型叫作“基础模型”,它对每个领域都有所了解,但是无法成为某个领域的专家。
  • SFT(有监督微调):SFT是指在预训练之后,将一个特定任务的数据集喂给AI,进一步训练模型。例如,在已经预训练的语言模型基础上,用专门的医学文本来微调模型,使其更擅长处理医学相关的问答或文本生成任务。

四、Transformer里的编码解码到底是什么?

语义的最小单位,是TOKEN,可以翻译成“词元”,它是语言类模型中用数字来表示单词的最小语义单位。

比如下图中这句话“This is a input text.” 首先被 Tokenizer 转化成最小词元,其中[CLS][SEP]为一句话的起始与结束符号(CLS:classification 告知系统这是句子级别的分类的开始、SEP:separator 告知系统结束本句或分割下一句),然后再通过 Embedding 的方式转化为向量。

比如猴子和香蕉,这两个语义关系紧密。原子能和香蕉,差距就比较远。

Transformer中,编码器和解码器中的“码”指的是什么?

以下是ChatGPT-4o-mini给出的答案:

编码器中的“码”

  • 输入表示:编码器接收输入序列(如文本),并将其转换成一个高维的向量表示。这些向量捕捉了输入序列中单词之间的关系和上下文信息。
  • 特征提取:编码器通过多层自注意力机制和前馈神经网络提取特征,使得每个输入的表示包含了其在上下文中的重要性。

解码器中的“码”

  • 生成输出:解码器使用编码器生成的表示以及之前生成的单词,逐步生成目标序列(如翻译后的文本)。这里的“码”指的是解码器对已生成内容的处理和对未来内容的预测。
  • 上下文结合:解码器同样使用自注意力机制来考虑已生成的单词与当前生成位置的关系。

总结来说,“码”在这里代表了对输入和输出数据的数学表示方式,帮助模型理解和生成语言。

总的来说,编码器负责理解和处理输入,而解码器则负责生成输出,二者协同工作以实现有效的序列转换。

参考:

https://baijiahao.baidu.com/s?id=1801561545647449293&wfr=spider&for=pc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428827.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浅析OceanBase数据库的向量化执行引擎

本篇博客是偏数据库系统概念性的内容,不会深入到 OceanBase 中各个算子和表达式的在向量化中的详细设计和实现。 背景 为了提升OceanBase社区版用户解决问题的效率,OceanBase官方不久前推出了《OceanBase 从入门到实践》系列课程。在第七期直播课程后&a…

嵌入式 开发技巧和经验分享

文章目录 前言嵌入式 开发技巧和经验分享目录1.1嵌入式 系统的 定义1.2 嵌入式 操作系统的介绍1.3 嵌入式 开发环境1.4 编译工具链和优化1.5 嵌入式系统软件开发1.6 嵌入式SDK开发2.1选择移植的系统-FreeRtos2.2FreeRtos 移植步骤2.3 系统移植之中断处理2.4系统移植之内存管理2…

【数据结构与算法 | 灵神题单 | 自底向上DFS篇】力扣965, 2331, 100, 1379

1. 力扣965:单值二叉树 1.1 题目: 如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。 只有给定的树是单值二叉树时,才返回 true;否则返回 false。 示例 1: 输入:[1,1,1,1,1,n…

Jenkins学习

系列文章目录 第一章 基础知识、数据类型学习 第二章 万年历项目 第三章 代码逻辑训练习题 第四章 方法、数组学习 第五章 图书管理系统项目 第六章 面向对象编程:封装、继承、多态学习 第七章 封装继承多态习题 第八章 常用类、包装类、异常处理机制学习 第九章 集…

vue table id一样的列合并

合并场景:如果id一样,则主表列合并,子表列不做合并,可实现单行、多行合并,亲测!!! 展示效果如图示: 组件代码: // table组件 :span-method"objectSpa…

低代码可视化工具-uniapp页面跳转传参-代码生成器

uniapp页面跳转传参 在uni-app中,页面间的跳转和传参是一个常见的需求。uni-app提供了多种页面跳转方式,如uni.navigateTo、uni.redirectTo、uni.reLaunch、uni.switchTab、uni.navigateBack等,每种方式适用于不同的场景。以 页面跳转并传参…

【用Java学习数据结构系列】对象的比较(Priority Queue实现的前提)

看到这句话的时候证明:此刻你我都在努力 加油陌生人 个人主页:Gu Gu Study 专栏:用Java学习数据结构系列 喜欢的一句话: 常常会回顾努力的自己,所以要为自己的努力留下足迹 喜欢的话可以点个赞谢谢了。 作者&#xff…

加密与安全_优雅存储二要素(AES-256-GCM )

文章目录 什么是二要素如何保护二要素(姓名和身份证)加密算法分类场景选择算法选择AES - ECB 模式 (不推荐)AES - CBC 模式GCM(Galois/Counter Mode)AES-256-GCM简介AES-256-GCM工作原理安全优势 应用场景其他模式 和 敏感数据加密…

MySQL:库表的基本操作

库操作 查看 查看存在哪些数据库: show databases;查看自己当前处于哪一个数据库: select database(); 由于我不处于任何一个数据库中,此处值为NULL 查看当前有哪些用户连接到了MySQL: show processlist; 创建 创建一个数据库 语…

前端web端项目运行的时候没有ip访问地址

我们发现 没有netWork 的地址 导致 团队内其他同学无法打开我们的地址 进行访问 在page.json 中的运行 指令中 添加 --host 记得加上空格 这样我们就可以看到这个地址了 团队其他同学 就可以访问我们这个地址了

Tomcat服务器—Windows下载配置详细教程

一、关于 1.1 简介 Tomcat是一个开源的Java Servlet容器和Web服务器,由Apache软件基金会维护。它实现了Java Servlet和JavaServer Pages (JSP) 规范,用于运行Java Web应用程序。Tomcat支持多种Java EE功能,并提供了高效的性能和可扩展性&am…

我的AI工具箱Tauri版-VideoDuplication视频素材去重

本教程基于自研的AI工具箱Tauri版进行VideoDuplication视频素材去重。 该项目是基于自研的AI工具箱Tauri版的视频素材去重工具,用于高效地处理和去除重复视频内容。用户可以通过搜索关键词"去重"或通过路径导航到"Python音频技术/视频tools"模…

Linux内核移植实战总结

直接参考【正点原子】I.MX6U嵌入式Linux驱动开发指南V1.81 本文仅作为个人笔记使用,方便进一步记录自己的实践总结。 前两章我们简单了解了一下 Linux 内核顶层 Makefile 和 Linux 内核的启动流程,本章我们就来学习一下如何将 NXP官方提供的 Linux 内核移…

电脑网络怎么弄动态ip :步骤详解与优势探讨

在当今的数字化时代,网络连接已成为我们日常生活和工作中不可或缺的一部分。对于大多数用户而言,动态IP地址是一种便捷且常用的网络配置方式,它允许设备在每次连接到网络时自动获取一个新的IP地址。这种设置不仅简化了网络管理,还…

Cypress安装与启动(开始学习记录)

一 Cypress安装 使用npm安装 1.查看node.js npm的版本,输入 npm --version 和 node --version,node.js没安装的可以去中文网下载最新稳定版安装,npm不建议升级到最新版本,会导致安装Cypress时Error: Cannot find module ansi-st…

一个基于 laravel 和 amis 开发的后台框架, 友好的组件使用体验,可轻松实现复杂页面(附源码)

前言 随着互联网应用的发展,后台管理系统的复杂度不断增加,对于开发者而言,既要系统的功能完备,又要追求开发效率的提升。然而,传统的开发方式往往会导致大量的重复劳动,尤其是在构建复杂的管理页面时。有…

MQ入门(4)

Erlang:面向高并发的 单机的吞吐量就是并发性:Rabbitmq是10w左右(现实项目中已经足够用了),RocketMQ是10w到20w,Kafka是100w左右。 公司里的并发(QPS) 大部分的公司每天的QPS大概…

Elionix 电子束曝光系统

Elionix 电子束曝光系统 - 上海纳腾仪器有限公司 -

【FreeRTOS】信号量

1.概念 当访问一个共享资源时,两个任务,并发访问出现不一致的问题,需要通过信号量解决 那么信号量是如何解决这个问题的呢? 任务量你可以认为是一把锁,一个任务拿到这个锁之后访问这个临界资源, 其他任务…

如何设计出一个比较全面的测试用例

目录 1. 测试用例的基本要素(不需要执行结果) 2. 测试用例的给我们带来的好处 3. 用例编写步骤 4. 设计测试用例的方法 4.1 基于需求进行测试用例的设计 4.2 具体的设计方法 1.等价类 2.边界值 3.判定表(因果图) 4.正交表法 5.场景设计法 6.错误猜测…