专业学习|动态规划(概念、模型特征、解题步骤及例题)

一、引言

(一)从斐波那契数列引入自底向上算法

(1)知识讲解

(2)matlap实现递归

(3)带有备忘录的遗传算法

(4)matlap实现带有备忘录的递归算法

“;”是为了不显示中间的计算结果;“==”双等号表示判断;“tic、toc”运算开始和结束的时间;

(5)采用自低向上的算法进行求解和代码实现

(二)从斐波那契数列(解决)引入动态规划

(1)从斐波那契数列引入动态规划

(2)动态规划中的常见概念

(3)动态规划解题思路

(4)例题讲解

1)使用递归解决打家劫舍问题

上述使用递归的方法会出现重叠子问题。

2)使用动态规划解决打家劫舍问题

3)动态规划中状态压缩的技巧

5)输出盗窃房屋的编号

(5)动态规划中的最优子结构和无后效性

(6)利用调试功能窥探动态规划函数内部

二、动态规划介绍

(一)动态规划中的常见到的概念

        这里我们还是以求解斐波那契数列来举例子,尽管它不算严格的动态规划:

(1)子问题和原问题

        原问题就是你要求解的这个问题本身,子问题是和原问题相似但规模较小的问题(原问题本身就是子问题的最复杂的情形,即子问题的特例)。例如:要求F(10),那么求出F(10)就是原问题,求出F(k)(k≤10)都是子问题。

(2)状态

        状态就是子问题中会变化的某个量,可以把状态看成我们要求解的问题的自变量。

        例如:我们要求的F(10),那么这里的自变量10就是一个状态。

(3)状态转移方程

        能够表示状态之间转移关系的方程,一般利用关于状态的某个函数建立起来。例如:F(n)=F(n-1)+ F(n-2),当n为>2的整数时;当n=1或2时,F(n)=1,这种最简单的初始条件一般称为边界条件,也被称为基本方程。

(4)DP数组(DP就是动态规划的缩写)

        DP 数组也可以叫"子问题数组",因为 DP 数组中的每一个元素都对应一个子问题的结果,DP数组的下标一般就是该子问题对应的状态。例如:使用自底向上法编程求解时,我们定义的向量FF就可以看成一个DP数组数组下标从1取到n,对应的元素从F(1)取到F(n)。

(二)动态规划建模过程

(1)概述:

        建立动态规划的模型,就是分析问题并建立问题的动态规划基本方程。成功地应用动态规划方法的关键,在于识别问题的多阶段特征,将问题分解成为可用递推关系式联系起来的若干子问题,而正确建立基本递推关系方程的关键又在于正确选择状态变量,保证各阶段的状态变量具有递推的状态转移关系.

(2)动态规划模型的建立:

        动态规划模型的构成要素:阶段、状态变量、决策变量、状态转移方程以及指标函数,如下图所示

(3)模型建立要点

1.分析题意,识别问题的多阶段特性,按时间或空间的先后顺序适当地划分为满足递推关系的若干阶段,对非时序的静态问题要人为地赋予“时段”概念。

2.正确地选择状态变量,使其具备两个必要特征:

(1)可知性;即过程演变的各阶段状态变量的取值,能直接或间接地确定。

(2)能够确切地描述过程的演变且满足无后效性。即由第k阶段的状态sk出发的后部子过程,可以看作是一个以sk为初始状态的独立过程。

3.根据状态变量与决策变量的含义,正确写出状态转移方程或转移规则。

4.正确列出最优指标函数的递推关系及边界条件(即基本方程)。

(4)动态规划的求解:

        动态规划的求解有两种基本方法:逆序解法(后向动态规划方法)、顺序解法(前向动态规划方法)

        逆序解法即寻优的方向与多阶段决策过程的实际行进方向相反,从最后一段开始计算逐段前推,求得全过程的最优策略。与之相反,顺序解法的寻优方向与过程的行进方向相同,计算时从第一段开始逐段向后递推,计算后一阶段要用到前一阶段的求优结果,最后一段计算的结果就是全过程的最优结果。

        顺序解法与逆序解法本质上并无区别,一般来说,当初始状态给定时可用逆序解法,当终止状态给定时可用顺序解法。若问题给定了一个初始状态与一个终止状态,则两种方法均可使用。两者的不同之处主要有三点:状态转移方式不同;最优指标函数定义不同;基本方程形式不同。

1)状态转移方式不同

 2)指标函数的定义不同

 3)基本方程形式不同

(5)动态建模框架

(三)零钱兑换问题讲解(动态规划例题)

(1)零钱兑换问题分析

(2)编程求解

(3)怎样得到具体的硬币组合(分析及matlap实现)

(4)贪心算法解决生活中的找零问题

(5)扩展-背包问题扩展

(四)DP问题分类

DP 类型介绍解决问题性质解题步骤经典案例
线性 DP针对单串或双串进行状态转移,通常涉及到子序列、子数组的性质。子序列、子数组的优化定义状态,建立递推关系,填写状态表300. 最长上升子序列 <br> 1143. 最长公共子序列 <br> 120. 三角形最小路径和 <br> 53. 最大子序和 <br> 152. 乘积最大子数组 <br> 887. 鸡蛋掉落 <br> 354. 俄罗斯套娃信封问题 <br> 198. 打家劫舍 <br> 213. 打家劫舍 II <br> 股票系列(121, 122, 123, 188, 309, 714) <br> 字符串匹配系列(72, 44, 10)
区间 DP通过定义区间状态来求解问题,常用于字符串和序列的性质。区间划分、优化定义区间状态,转移时考虑区间内的所有可能516. 最长回文子序列 <br> 730. 统计不同回文子字符串 <br> 1039. 多边形三角剖分的最低得分 <br> 664. 奇怪的打印机 <br> 312. 戳气球
背包 DP解决选择问题的背包问题,通过状态转移实现选择和价值的最优化。最优选择、容量限制定义物品和背包状态,转移时考虑物品的选择情况416. 分割等和子集 <br> 494. 目标和 <br> 322. 零钱兑换 <br> 518. 零钱兑换 II <br> 474. 一和零
树形 DP针对树形结构进行动态规划,利用树的递归性质。树的路径、子树性质深度优先遍历,维护状态124. 二叉树中的最大路径和 <br> 1245. 树的直径 <br> 543. 二叉树的直径 <br> 333. 最大 BST 子树 <br> 337. 打家劫舍 III
状态压缩 DP通过位运算压缩状态,用于处理较大状态空间的情况。状态压缩、子集优化使用位运算表示状态,维护状态转移464. 我能赢吗 <br> 526. 优美的排列 <br> 935. 骑士拨号器 <br> 1349. 参加考试的最大学生数
数位 DP解决涉及数字的组合和计数问题,通常用于约束条件下的数字组合。数字组合、计数定义数字状态,考虑每位的取值和限制233. 数字 1 的个数 <br> 902. 最大为 N 的数字组合 <br> 1015. 可被 K 整除的最小整数
计数型 DP通过计数方法解决路径、组合等问题,结合组合数学原理。路径计数、组合计数定义路径或组合状态,利用数学公式进行转移62. 不同路径 <br> 63. 不同路径 II <br> 96. 不同的二叉搜索树 <br> 1259. 不相交的握手
递推型 DP使用递推关系,通过快速幂等方法提高计算效率。递推关系、状态转移定义递推关系,利用快速幂优化计算70. 爬楼梯 <br> 509. 斐波那契数 <br> 935. 骑士拨号器 <br> 957. N 天后的牢房 <br> 1137. 第 N 个泰波那契数
概率型 DP用于计算概率和期望值,常见于随机过程问题。概率计算、期望值定义状态转移方程,利用概率性质进行推导808. 分汤 <br> 837. 新21点
博弈型 DP涉及两方博弈的问题,通过博弈论原理分析最优策略。策略优化、对抗性游戏定义状态,分析最优选择,通常使用极小化或极大化293. 翻转游戏 <br> 294. 翻转游戏 II <br> 292. Nim 游戏 <br> 877. 石子游戏 <br> 1140. 石子游戏 II <br> 348. 判定井字棋胜负 <br> 794. 有效的井字游戏 <br> 1275. 找出井字棋的获胜者
记忆化搜索结合深度优先搜索和记忆化技术,适用于状态转移不确定的情况。状态空间优化、DFS使用递归和哈希表存储结果,避免重复计算329. 矩阵中的最长递增路径 <br> 576. 出界的路径数

        参考:力扣上的 DP 问题分类汇总 - 力扣(LeetCode)

三、动态规划——求解多阶段决策过程最优化问题的数学方法

(一)多阶段决策模型及其特点

        多阶段决策过程,是指这样的一类特殊的活动过程,问题可以按时间顺序分解成若干相互联系的阶段,在每一个阶段都要做出决策,全部过程的决策是一个决策序列。

根据过程的特性可以将过程按空间、时间等标志分为若干个互相联系又互相区别的阶段。

在每一个阶段都需要做出决策,从而使整个过程达到最好的效果。

各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展。

当各个阶段的决策确定后,就组成了一个决策序列,因而也就决定了整个过程的一条活动路线,这样的一个前后关联具有链状结构的多阶段过程就称为多阶段决策问题。

(二)动态规划求解案例

        针对多阶段决策过程的最优化问题,美国数学家Bellman等人在20世纪50年代初提出了著名的最优化原理,把多阶段决策问题转化为一系列单阶段最优化问题,从而逐个求解,创立了解决这类过程优化问题的新方法:动态规划。

        对最佳路径(最佳决策过程)所经过的各个阶段,其中每个阶段始点到全过程终点的路径,必定是该阶段始点到全过程终点的一切可能路径中的最佳路径(最优决策),这就是Bellman提出的著名的最优化原理。即 一个最优策略的子策略必然也是最优的。

来源:求解多阶段决策过程最优化问题-CSDN博客

        A地到 E 地要铺设一条煤气管道,其中需经过三级中间站,两点之间的连线上的数字表示距离。如图所示,问应该选择什么路线,使总距离最短?
解:整个计算过程分为四个阶段,从最后一个阶段开始。

第四阶段:有两条路。 ①D1E=5,②D2E=2。②最优。


第三阶段:有六条路。

经过C1点——①C1D1+5=8,②C1D2+2=11。

他山之石(参考借鉴)

[1]利用调试功能窥探动态规划函数内部_bilibili

[2]数学建模优化类问题—动态规划_动态规划模型-CSDN博客

[3]【labuladong】动态规划核心套路详解_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/429761.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用库函数点亮一个LED灯

软件设计 STM32Gpio的介绍 如果想让LED0点亮&#xff0c;那么R12就要是高电平&#xff0c;LED0就要是低电平&#xff0c;也就是PF9就是低电平 F407系统主频要工作在168MHZ F103的话是工作在72mhz F429的话就180MHZ 接着我们就要使能Gpio的时钟&#xff0c;使能之后对GPIO相关…

c++----io流

提示&#xff1a;以下 是本篇文章正文内容&#xff0c;下面案例可供参考 1.标准io流 (1)数据的循环输入 对于内置类型&#xff1a;cin和cout直接使用&#xff0c;c已经重载了 (2)对于自定义类型&#xff1a; 需要我们自己对类型进行重载 2.文件io流 ifstream ifile(只输入…

着色器 简介

着色器&#xff08;Shader&#xff09;是运行在 GPU 上的小程序。这些小程序为图形渲染管线的某个特定部分而运行。从基本意义上来说&#xff0c;着色器只是一种把输入转化为输出的程序。着色器也是一种非常独立的程序&#xff0c;因为它们之间不能相互通信&#xff1b;它们之间…

【洛谷】P10417 [蓝桥杯 2023 国 A] 第 K 小的和 的题解

【洛谷】P10417 [蓝桥杯 2023 国 A] 第 K 小的和 的题解 题目传送门 题解 CSP-S1 补全程序&#xff0c;致敬全 A 的答案&#xff0c;和神奇的预言家。 写一下这篇的题解说不定能加 CSP 2024 的 RP 首先看到 k k k 这么大的一个常数&#xff0c;就想到了二分。然后写一个判…

中序遍历二叉树全过程图解

文章目录 中序遍历图解总结拓展&#xff1a;回归与回溯 中序遍历图解 首先看下中序遍历的代码&#xff0c;其接受一个根结点root作为参数&#xff0c;判断根节点是否为nil&#xff0c;不为nil则先递归遍历左子树。 func traversal(root *TreeNode,res *[]int) {if root nil …

ArcGIS核密度分析(栅格处理范围与掩膜分析)

多时候我们在进行栅格分析的时候&#xff0c;处理的结果不能完全覆盖我们需要的范围。 比如&#xff0c;我们对点数据进行密度分析、栅格插值等。比如下图 为什么会如此呢&#xff1f; 那是因为在做这个密度分析或者栅格插值的时候&#xff0c;默认是以点的四至范围来生成的&am…

国内可以使用的ChatGPT服务【9月持续更新】

首先基础知识还是要介绍得~ 一、模型知识&#xff1a; GPT-4o&#xff1a;最新的版本模型&#xff0c;支持视觉等多模态&#xff0c;OpenAI 文档中已经更新了 GPT-4o 的介绍&#xff1a;128k 上下文&#xff0c;训练截止 2023 年 10 月&#xff08;作为对比&#xff0c;GPT-4…

探索 Web Speech API:实现浏览器语音识别与合成

引言 Web Speech API 是一项由 W3C 开发的 Web 标准&#xff0c;为开发者提供了在 Web 应用程序中实现语音识别和语音合成的能力。通过 Web Speech API&#xff0c;我们可以让网页与用户进行语音交互&#xff0c;实现更加智能化和便捷的用户体验。本文将深入探讨 Web Speech A…

第十二周:机器学习

目录 摘要 Abstract 一、非监督学习 二、word embedding 三、transformer 1、应用 2、encoder 3、decoder 四、各类attention 1、最常见的类别 2、其余种类 3、小结 总结 摘要 本周继续学习机器学习的相关课程&#xff0c;首先了解了监督学习和非监督学习的概…

Flink Task 日志文件隔离

Flink Task 日志文件隔离 任务在启动时会先通过 MdcUtils 启动一个 slf4j 的 MDC 环境&#xff0c;然后将 jobId 添加到 slf4j 的 MDC 容器中&#xff0c;随后任务输出的日志都将附带 joid。 MDC 介绍如下&#xff1a; MDC ( Mapped Diagnostic Contexts )&#xff0c;它是一个…

文件操作和InputStream,OutputStream的用法

“他越拧巴&#xff0c;我越喜欢&#xff01;” 文件&#xff1a; 此处谈到的文件&#xff0c;本身有很多的含义。 狭义上的文件&#xff0c;特指 硬盘上的文件&#xff08;以及保存文件的目录&#xff09;。 广义上的文件&#xff0c;计算机上的很多硬件设备&#xff0c;软…

idea2021git从dev分支合并到主分支master

1、新建分支 新建一个名称为dev的分支&#xff0c;切换到该分支下面&#xff0c;输入新内容 提交代码到dev分支的仓库 2、切换分支 切换到主分支&#xff0c;因为刚刚提交的分支在dev环境&#xff0c;所以master是没有 3、合并分支 点击push&#xff0c;将dev里面的代码合并到…

【Web】御网杯信息安全大赛2024 wp(全)

目录 input_data admin flask 如此多的FLAG 一夜醒来之全国CTF水平提升1000倍&#x1f60b; input_data 访问./.svn后随便翻一翻拿到flag admin dirsearch扫出来 访问./error看出来是java框架 测出来是/admin;/路由打Spring View Manipulation(Java)的SSTI https:/…

C++容器list底层迭代器的实现逻辑~list相关函数模拟实现

目录 1.两个基本的结构体搭建 2.实现push_back函数 3.关于list现状的分析&#xff08;对于我们如何实现这个迭代器很重要&#xff09; 3.1和string,vector的比较 3.2对于list的分析 3.3总结 4.迭代器类的封装 5.list容器里面其他函数的实现 6.个人总结 7.代码附录 1.两…

Selenium with Python学习笔记整理(网课+网站持续更新)

本篇是根据学习网站和网课结合自己做的学习笔记&#xff0c;后续会一边学习一边补齐和整理笔记 官方学习网站在这获取&#xff1a; https://selenium-python.readthedocs.io/getting-started.html#simple-usage WEB UI自动化环境配置 (推荐靠谱的博客文章来进行环境配置,具…

Fyne ( go跨平台GUI )中文文档- 架构 (八)完结

本文档注意参考官网(developer.fyne.io/) 编写, 只保留基本用法 go代码展示为Go 1.16 及更高版本, ide为goland2021.2 这是一个系列文章&#xff1a; Fyne ( go跨平台GUI )中文文档-入门(一)-CSDN博客 Fyne ( go跨平台GUI )中文文档-Fyne总览(二)-CSDN博客 Fyne ( go跨平台GUI…

《深度学习》PyTorch 手写数字识别 案例解析及实现 <下>

目录 一、回顾神经网络框架 1、单层神经网络 2、多层神经网络 二、手写数字识别 1、续接上节课代码&#xff0c;如下所示 2、建立神经网络模型 输出结果&#xff1a; 3、设置训练集 4、设置测试集 5、创建损失函数、优化器 参数解析&#xff1a; 1&#xff09;para…

ArcGIS10.2/10.6安装包下载与安装(附详细安装步骤)

相信从事地理专业的小伙伴来说&#xff0c;应该对今天的标题不会陌生。Arcgis是一款很常用的地理信息系统软件&#xff0c;主要用于地理数据的采集、管理、分析和展示。目前比较常见的版本有ArcGIS 10.2和ArcGIS 10.6。 不可否认&#xff0c;Arcgis具有强大的地图制作、空间分…

DataGrip在Windows和MacOS平台上的快捷键

0. 背景信息 No.说明1测试DataGrip版本号 : 2024.2.2 1. Windows下快捷键 2. MacOS下快捷键

CentOS Stream 9部署Redis

1、安装Redis sudo dnf install redis 2、启动Redis服务 sudo systemctl start redis 3、设置Redis开机自启 sudo systemctl enable redis 4、打开Redis配置文件&#xff1a; sudo vi /etc/redis/redis.conf 在配置文件中找到并修改以下两行&#xff0c;确保密码验证功能已启…