yolov5/8/9/10模型在VOC数据集上的应用【代码+数据集+python环境+GUI系统】

yolov5/8/9/10模型在VOC数据集上的应用【代码+数据集+python环境+GUI系统】

1.背景意义

VOC数据集被广泛应用于计算机视觉领域的研究和实验中,特别是目标检测和图像识别任务。许多知名的目标检测算法都使用VOC数据集进行训练和测试。VOC挑战赛(VOC Challenge)作为计算机视觉领域的一个重要竞赛,推动了目标检测和图像识别技术的发展。VOC数据集作为该挑战赛的标准数据集之一,对计算机视觉领域的研究产生了深远的影响。

2.YOLO算法的特点

YOLOv8算法是YOLO(You Only Look Once)系列目标检测算法的最新版本,由Ultralytics团队开发。它继承了YOLO系列的优点,并在多个方面进行了创新和优化,以下是YOLOv8算法的主要特点:

(1)实时性和准确性

实时性:YOLOv8能够在保持较高准确率的同时,实现实时的目标检测,适用于需要快速响应的场景。它能够在较低的硬件配置上也能达到很高的帧率(FPS)。

准确性:通过更深更复杂的网络结构和改进的训练技巧,YOLOv8在保持高速度的同时,也大幅提高了检测的准确度。

(2)端到端的检测

YOLOv8采用端到端的训练和推理方式,可以直接从原始图像中预测目标的位置和类别,无需额外的候选框生成和筛选过程。

(3)多尺度特征融合

YOLOv8通过引入不同尺度的特征图,并进行特征融合,可以更好地处理不同大小的目标物体。它能够在多个尺度上进行预测,通常包括P3、P4、P5和新增的P2层,以增强对小目标的检测能力。

(4)鲁棒性

YOLOv8在处理遮挡、尺度变化和复杂背景等问题上具有较强的鲁棒性。这得益于其先进的特征提取网络和优化的检测策略。

(5)新技术和结构

Dense Prediction Module (DPM):DPM允许YOLOv8在高维特征图上直接进行密集预测,保留更多细节信息,有助于提高检测精度。

Soft-Gated Skip Connection (SGSC):SGSC技术利用门控机制动态调整不同特征图间的权重,使得模型能够更好地捕捉不同尺度的目标特征。

Anchor-Free检测方式:相比传统基于锚点的方法,YOLOv8采用了Anchor-Free的检测方式,减少了先验形状的限制,提高了检测精度和速度。

解耦头结构:Head部分相比YOLOv5发生了较大变化,从原先的耦合头变成了解耦头,并且从Anchor-Based转变为Anchor-Free。

TaskAlignedAssigner正样本分配策略:在Loss计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss。

(6)灵活性和可扩展性

YOLOv8支持多种数据增强技术,如Mosaic、Flip、Rotate、Crop等,可以在训练模型时增加数据的多样性,从而提高模型的泛化能力和鲁棒性。

它不仅用于目标检测,还可以扩展到图像分类、实例分割、姿态估计等计算机视觉任务。

(7) 易于使用和部署

YOLOv8可以通过pip安装,用户可以在几分钟内启动和运行YOLOv8。此外,Ultralytics提供了两种许可选项,以适应不同的使用情况:AGPL-3.0许可证适合学生和爱好者使用,而商业用户则可以选择其他许可选项。

综上所述,YOLOv8算法在实时性、准确性、多尺度检测、鲁棒性、新技术应用以及灵活性和可扩展性等方面都表现出色,是当前目标检测领域的一种先进算法。

3.YOLO算法原理

YOLOv8是一种基于深度学习的目标检测算法,其核心思想是通过训练深度卷积神经网络(CNN),对输入图像进行特征提取,并利用这些特征进行目标检测。该算法在目标检测领域具有较高的准确性和实时性,被广泛应用于安防、监控、无人驾驶等领域。

1. 特征提取

YOLOv8使用Darknet-53或其变种作为基础网络,通过多个卷积层和残差块来提取图像的特征。这些卷积层和残差块能够有效地捕捉图像中的关键信息,为后续的目标检测提供有力的支持。

2. 特征融合

为了在不同尺度上检测不同大小的目标,YOLOv8引入了特征金字塔网络(FPN)或类似结构来融合不同尺度的特征图。通过融合不同层次的特征信息,算法能够更准确地检测图像中的目标。

3. 目标检测

YOLOv8将图像划分为多个网格,并为每个网格预测边界框和类别概率。每个边界框包含了目标的位置(中心坐标、宽度和高度)和大小信息,而类别概率则表示该边界框中包含的目标属于各个类别的概率。通过这种方式,算法能够同时检测图像中的多个目标。

4. 预测输出

在得到每个网格的预测结果后,YOLOv8会采用非极大值抑制(NMS)等后处理技术来去除重叠的边界框,只保留置信度最高的边界框作为最终的检测结果。这样可以确保检测结果的准确性和可靠性。

4.算法创新点

1. 新的骨干网络

YOLOv8采用了新的骨干网络结构,如C2f模块等,以实现更高效的特征提取和更轻量化的模型设计。这些新的网络结构在保持高性能的同时,降低了模型的计算复杂度和参数量。

2. Anchor-Free检测头

与之前的YOLO版本不同,YOLOv8采用了Anchor-Free的检测头结构。这种结构不再依赖于预设的锚点框(anchors),而是直接预测目标的边界框和类别概率。这种改进使得算法更加灵活和准确。

3. 新的损失函数

YOLOv8引入了新的损失函数来计算预测结果与真实标签之间的差异。这些损失函数包括分类损失(如VFL Loss)和回归损失(如DFL Loss+CIOU Loss)等,它们能够更准确地反映预测结果的优劣,并帮助算法在训练过程中不断优化性能。

5.数据集在YOLO算法中的设置

数据集主要类别为:

示例图片如下:

 

将数据集划分为训练集、测试集以及验证:

设置数据集在yolov8中的配置文件为:

6.代码示例与操作步骤

设置训练、测试、推理的参数,进行编写代码:

训练代码:

分别运行对应的代码可以进行训练、测试、单张图片推理。

    设计对应的GUI界面如下:

7.安装使用说明

为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。

运行该脚本可以直接执行GUI代码,进入上述界面。不需要再次配置python的环境,开箱即用

8.联系方式

我们非常乐意根据您的特定需求提供高质量的定制化开发服务。为了确保项目的顺利进行和最终交付的质量,我们将依据项目的复杂性和工作量来评估并收取相应的服务费用,欢迎私信联系我哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/429904.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Chainlit集成LlamaIndex实现知识库高级检索(自动合并检索)

检索原理 自动合并检索 自动合并检索原理,和我的上一篇文章的检索方案: 将文本分割成512大小(一般对应段落大小)和128(一般对句子大小不是严格的句子长度)大小两种分别存储到索引库,再用llama_…

NoSql数据库Redis知识点

数据库的分类 关系型数据库 ,是建立在关系模型基础上的数据库,其借助于集合代数等数学概念和方法来处理数据库 中的数据主流的 MySQL 、 Oracle 、 MS SQL Server 和 DB2 都属于这类传统数据库。 NoSQL 数据库 ,全称为 Not Only SQL &a…

[uni-app]小兔鲜-01项目起步

项目介绍 效果演示 技术架构 创建项目 HBuilderX创建 下载HBuilderX编辑器 HBuilderX/创建项目: 选择模板/选择Vue版本/创建 安装插件: 工具/插件安装/uni-app(Vue3)编译器 vue代码不能直接运行在小程序环境, 编译插件帮助我们进行代码转换 绑定微信开发者工具: 指定微信开…

2024年最新前端工程师 TypeScript 基础知识点详细教程(更新中)

1. TypeScript 概述 TypeScript 是由微软开发的、基于 JavaScript 的一种强类型编程语言。它是在 JavaScript 的基础上添加了静态类型检查、面向对象编程等功能的超集,最终会被编译为纯 JavaScript 代码。由于其扩展了 JavaScript 的功能,TypeScript 特…

解锁亚马逊测评自养号防关联新技术

解锁亚马逊测评自养号防关联的新技术主要包括以下几个方面,这些技术旨在提高测评过程的安全性,降低账号被关联的风险: 1. 独立纯净IP技术 独立纯净IP:采用独立、纯净且未受污染的国外IP地址,确保这些IP未被标记或列入…

240922-MacOS终端访问硬盘

A. 最终效果 B. 操作步骤 在macOS中,可以通过命令行使用Terminal访问硬盘的不同位置。你可以按照以下步骤操作: 打开终端(Terminal): 在应用程序中打开终端,或者使用 Spotlight 搜索“Terminal”来启动。 …

初学者的鸿蒙多线程并发之 TaskPool 踩坑之旅

1. 背景 目标群体:鸿蒙初学者 版本:HarmonyOS 3.1/4.0 背景:鸿蒙 App 的全局路由管理功能,需要在 App 启动时初始化对 raw 下的相关配置文件进行读取、解析并缓存。App 启动时涉及到了大量模块的初始化,好多模块都涉…

巨潮股票爬虫逆向

目标网站 aHR0cDovL3dlYmFwaS5jbmluZm8uY29tLmNuLyMvSVBPTGlzdD9tYXJrZXQ9c3o 一、抓包分析 请求头参数加密 二、逆向分析 下xhr断点 参数生成位置 发现是AES加密,不过是混淆的,但并不影响咱们扣代码 文章仅提供技术交流学习,不可对目标服…

Vue3+Element Plus:使用el-dialog,对话框可拖动,且对话框弹出时仍然能够在背景页(对话框外部的页面部分)上进行滚动以及输入框输入信息

【需求】 使用Element Plus中的el-dialog默认是模态的(即它会阻止用户与对话框外部的元素进行交互),对话框弹出时仍然能够在背景页(对话框外部的页面部分)上进行滚动以及输入框输入信息,且对话框可拖动 【…

react hooks--React.memo

基本语法 React.memo 高阶组件的使用场景说明: React 组件更新机制:只要父组件状态更新,子组件就会无条件的一起更新。 子组件 props 变化时更新过程:组件代码执行 -> JSX Diff(配合虚拟 DOM)-> 渲…

STM32精确控制步进电机

目的:学习使用STM32电机驱动器步进电机,进行电机运动精确控制。 测试环境: MCU主控芯片STM32F103RCT6 ;A4988步进电机驱动器模块;微型2相4线步进电机10mm丝杆滑台,金属丝杆安装有滑块。 10mm二相四线微型…

NtripShare测量机器人自动化监测系统测站更换仪器后重新设站

NtripShare测量机器人自动化监测系统投入商业运营已经很久了,在MosBox与自动优化网平差技术的加持下,精度并不让人担心,最近基于客户需求处理了两个比较大的问题。 1、增加对反射片和免棱镜的支持。 2、进一步优化测站更换仪器或重新整平后重…

Qemu开发ARM篇-5、buildroot制作根文件系统并在qemu中进行挂载启动

文章目录 1、 buildroot源码获取2、buildroot配置3、buildroot编译4、挂载根文件系统 在上一篇 Qemu开发ARM篇-4、kernel交叉编译运行演示中,我们编译了kernel,并在qemu上进行了运行,但到最后,在挂载根文件系统时候,挂…

[数据集][目标检测]文本表格检测数据集VOC+YOLO格式6688张5类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):6688 标注数量(xml文件个数):6688 标注数量(txt文件个数):6688 标注…

Fyne ( go跨平台GUI )中文文档-绘图和动画(三)

本文档注意参考官网(developer.fyne.io/) 编写, 只保留基本用法 go代码展示为Go 1.16 及更高版本, ide为goland2021.2 这是一个系列文章: Fyne ( go跨平台GUI )中文文档-入门(一)-CSDN博客 Fyne ( go跨平台GUI )中文文档-Fyne总览(二)-CSDN博客 Fyne ( go跨平台GUI…

Easy Excel从入门到精通!!!

目录 1.文件导入 1.1基本方式读取excel文件内容 1.2注解模型映射器读取excel 1.3多行表头读取 1.4文件上传读取 2.文件导出 2.1基本方式导出 2.2模型映射导出 2.3设置行高、列宽等内容 2.4合并单元格 2.5导出设置超链接、批注、公式 2.6模板填充对象导出 2.7模板填…

Mybatis 返回 Map 对象

一、场景介绍 假设有如下一张学生表: CREATE TABLE student (id int NOT NULL AUTO_INCREMENT COMMENT 主键,name varchar(100) NOT NULL COMMENT 姓名,gender varchar(10) NOT NULL COMMENT 性别,grade int NOT NULL COMMENT 年级,PRIMARY KEY (id) ) ENGINEInnoD…

【C++篇】引领C++模板初体验:泛型编程的力量与妙用

文章目录 C模板编程前言第一章: 初始模板与函数模版1.1 什么是泛型编程?1.1.1 为什么要有泛型编程?1.1.1 泛型编程的优势 1.2 函数模板的基础1.2.1 什么是函数模板?1.2.2 函数模板的定义格式1.2.3 示例:通用的交换函数输出示例&am…

华为HarmonyOS地图服务 11 - 如何在地图上增加点注释?

场景介绍 本章节将向您介绍如何在地图的指定位置添加点注释以标识位置、商家、建筑等,并可以通过信息窗口展示详细信息。 点注释支持功能: 支持设置图标、文字、碰撞规则等。支持添加点击事件。 PointAnnotation有默认风格,同时也支持自定…

文献阅读(220)MRCN

题目:MRCN: Throughput-Oriented Multicast Routing for Customized Network-on-Chips时间:2023期刊:TPDS研究机构:韩国成均馆大学 这篇论文探讨的问题是多播死锁问题,下图中Packet A分成两条路径,但在rou…