[深度学习]神经网络

 1 人工神经网络

全连接神经网络

2 激活函数

  • 隐藏层激活函数由人决定
  • 输出层激活函数由解决的任务决定:
    • 二分类:sigmoid
    • 多分类:softmax
    • 回归:不加激活(恒等激活identify)

2.1 sigmoid激活函数

  • x为加权和
  • 小于-6或者大于6,梯度接近于0,会出现梯度消失的问题
  • 即使取值 [-6,6] ,网络超过5层,也会发生梯度消失

import torch
import matplotlib.pyplot as plt
import osos.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# sigmoid
x = torch.linspace(-15, 15, 1000)
y = torch.sigmoid(x)
plt.plot(x, y)
plt.grid()
plt.show()x = torch.linspace(-15, 15, 1000, requires_grad=True)
torch.sigmoid(x).sum().backward()
plt.plot(x.detach(), x.grad)
plt.grid()
plt.show()

2.2 tanh激活函数

  • 只在RNN使用

import torch
import matplotlib.pyplot as plt
import osos.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# sigmoid
x = torch.linspace(-15, 15, 1000)
y = torch.tanh(x)
plt.plot(x, y)
plt.grid()
plt.show()

plt.show()
#%%
x = torch.linspace(-15, 15, 1000, requires_grad=True)
torch.tanh(x).sum().backward()
plt.plot(x.detach(), x.grad)
plt.grid()
plt.show()

2.3 ReLU激活函数

import torch
import matplotlib.pyplot as plt
import osos.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# sigmoid
x = torch.linspace(-15, 15, 1000)
y = torch.relu(x)
plt.plot(x, y)
plt.grid()
plt.show()

x = torch.linspace(-15, 15, 1000, requires_grad=True)
torch.relu(x).sum().backward()
plt.plot(x.detach(), x.grad)
plt.grid()
plt.show()

2.4 softmax激活函数

# softmax
scores=torch.tensor([0.2, 0.02, 0.15, 0.15, 1.3, 0.5, 0.06, 1.1, 0.05, 3.75])
probabilities=torch.softmax(scores,dim=0)
print(probabilities)

 

2.5 激活函数的选择方法

3 参数初始化

 3.1 指定值初始化&均匀初始化&正态初始化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/430976.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

乌克兰因安全风险首次禁用Telegram

据BleepingComputer消息,乌克兰国家网络安全协调中心 (NCCC) 以国家安全为由,已下令限制在政府机构、军事单位和关键基础设施内使用 Telegram 消息应用程序。 这一消息通过NCCC的官方 Facebook 账号对外发布,在公告中乌…

kubernetes网络(二)之bird实现节点间BGP互联的实验

摘要 上一篇文章中我们学习了calico的原理,kubernetes中的node节点,利用 calico 的 bird 程序相互学习路由,为了加深对 bird 程序的认识,本文我们将使用bird进行实验,实验中实现了BGP FULL MESH模式让宿主相互学习到对…

AI大模型日报#0923:李飞飞创业之后首个专访、华为云+腾讯音乐发布昇腾适配方案

导读:AI大模型日报,爬虫LLM自动生成,一文览尽每日AI大模型要点资讯!目前采用“文心一言”(ERNIE-4.0-8K-latest)、“智谱AI”(glm-4-0520)生成了今日要点以及每条资讯的摘要。欢迎阅…

深兰科技陈海波应邀出席2024长三角论坛暨虹桥人才创新发展大会

近日,以“人才引领 联动共融——国际化创新与长三角协同”为主题的“2024长三角人才发展论坛暨虹桥人才创新发展大会”在上海国际会议中心隆重举行。上海市委常委、组织部部长、市委人才办主任张为应邀出席并做大会致辞。 深兰科技创始人、董事长陈海波作为特邀企业…

数据结构强化(直播课)

应用题真题分析&备考指南 (三)线性表的应用 (六)栈、队列和数组的应用 (四)树与二叉树的应用 1.哈夫曼(Huffman)树和哈夫曼编码 2.并查集及其应用(重要) (四)图的基本应用 …

计算机组成原理(笔记4)

定点加减法运算 补码加法&#xff1a; 补码减法&#xff1a; 求补公式&#xff1a; 溢出的概念 在定点小数机器中,数的表示范围为|&#xff58;|<1。在运算过程中如出现大于1的现象,称为 “溢出”。 上溢&#xff1a;两个正数相加&#xff0c;结果大于机器所能表示的最…

【算法】堆与优先级队列

【ps】本篇有 4 道 leetcode OJ。 目录 一、算法简介 二、相关例题 1&#xff09;最后一块石头的重量 .1- 题目解析 .2- 代码编写 2&#xff09;数据流中的第 K 大元素 .1- 题目解析 .2- 代码编写 3&#xff09;前K个高频单词 .1- 题目解析 .2- 代码编写 4&#xf…

d2l | 目标检测数据集:RuntimeError: No such operator image::read_file

目录 1 存在的问题2 可能的解决方案3 最终的解决方案3.1 方案一&#xff08;我已弃用&#xff09;3.2 方案二&#xff08;基于方案一&#xff09; 1 存在的问题 李沐老师提供的读取香蕉数据集的函数如下&#xff1a; def read_data_bananas(is_trainTrue):""…

yolov10算法原理

文章目录 1. 模型效果2. 模型特点2.1 无NMS训练的一致性双重分配策略 (Consistent Dual Assignments for NMS-free Training)双重标签分配 (Dual Label Assignments)一致匹配度量&#xff08;Consistent Match. Metric&#xff09;一对一分配在一对多结果中的频率 2.2. 效率-准…

C++基础:第一个C++程序

初学C #include<iostream> int main() {std::cout << "Enter two numbers:" << std::endl;int v1 0, v2 0;std::cin >> v1 >> v2;std::cout << "The sum of "<< v1 << " and " << v2&…

Ubuntu磁盘不足扩容

1.问题 Ubuntu磁盘不足扩容 2.解决方法 安装一下 sudo apt-get install gpartedsudo gparted

JavaWeb--小白笔记07:servlet对表单数据的简单处理

这里的servlet对表单数据的处理是指使用IDEA创建web工程&#xff0c;再创建html和class文件进行连接&#xff0c;实现html创建一个表单网页&#xff0c;我们对网页中的表单进行填充&#xff0c;可以通过class文件得到网页我们填充的内容进行打印到控制台。 一登录系统页面---h…

【速成Redis】04 Redis 概念扫盲:事务、持久化、主从复制、哨兵模式

前言&#xff1a; 前三篇如下&#xff1a; 【速成Redis】01 Redis简介及windows上如何安装redis-CSDN博客 【速成Redis】02 Redis 五大基本数据类型常用命令-CSDN博客 【速成Redis】03 Redis 五大高级数据结构介绍及其常用命令 | 消息队列、地理空间、HyperLogLog、BitMap、…

自然语言处理-基于注意力机制的文本匹配

背景&#xff1a; 任务三&#xff1a;基于注意力机制的文本匹配 输入两个句子判断&#xff0c;判断它们之间的关系。参考ESIM&#xff08;可以只用LSTM&#xff0c;忽略Tree-LSTM&#xff09;&#xff0c;用双向的注意力机制实现。 参考 《神经网络与深度学习》 第7章 Reaso…

rar文件怎么打开?这几款软件压缩和查看很方便!

在这个数字化信息爆炸的时代&#xff0c;我们每天都会接触到各种各样的文件&#xff0c;其中RAR格式文件以其高压缩率和良好的文件保护特性&#xff0c;成为了许多人分享和存储大文件的首选。然而&#xff0c;面对这样一个看似“神秘”的文件格式&#xff0c;不少朋友可能会感到…

如何基于Flink CDC与OceanBase构建实时数仓,实现简化链路,高效排查

本文作者&#xff1a;阿里云Flink SQL负责人&#xff0c;伍翀&#xff0c;Apache Flink PMC Member & Committer 众多数据领域的专业人士都很熟悉Apache Flink&#xff0c;它作为流式计算引擎&#xff0c;流批一体&#xff0c;其核心在于其强大的分布式流数据处理能力&…

简单多状态dp第一弹 leetcode -面试题17.16.按摩师 -213.打家劫舍II

a​​​​​​​面试题 17.16. 按摩师 按摩师 题目: 分析: 使用动态规划解决 状态表示: dp[i] 表示&#xff1a;选择到 i 位置时&#xff0c;此时的最长预约时长。 但是我们这个题在 i 位置的时候&#xff0c;会面临 选择 或者 不选择 两种抉择&#xff0c;所依赖的状态需要…

大数据Flink(一百二十四):案例实践——淘宝母婴数据加速查询

文章目录 案例实践——淘宝母婴数据加速查询 一、​​​​​​​创建数据库表并导入数据 二、​​​​​​​​​​​​​​创建session集群 三、​​​​​​​​​​​​​​源表查询 四、​​​​​​​​​​​​​​指标计算 案例实践——淘宝母婴数据加速查询 随着…

GS-SLAM论文阅读笔记--GLC-SLAM

前言 最近GS-SLAM回环检测的工作已经逐步发展了&#xff0c;看一下这篇新文章。 文章目录 前言1.背景介绍2.关键内容2.1 tracking2.2 local mapping2.3 Loop Closing2.4总体流程 3.文章贡献 1.背景介绍 现有的基于3dgs的SLAM方法往往存在累积的跟踪误差和地图漂移&#xff0c…

【后端开发】JavaEE初阶—线程安全问题与加锁原理(超详解)

前言&#xff1a; &#x1f308;上期博客&#xff1a;【后端开发】JavaEE初阶—Theard类及常见方法—线程的操作&#xff08;超详解&#xff09;-CSDN博客 &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f308;小编会在后端开发的学习中不…