01【MATLAB】最小二乘系统辨识

 目录

 1.系统辨识的定义及其分类

1.1 系统辨识的定义

1.2 系统辨识的分类

2.参数模型

3.系统辨识的步骤

 一、最小二乘法(Least Squares Method)一般步骤

二、LSM原理及应用

三、LSM在控制系统建模中的应用


1.系统辨识的定义及其分类

1.1 系统辨识的定义

        L.A.Zadeh于1962年曾对系统辨识给出定义:系统辨识是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。

1.2 系统辨识的分类

2.参数模型

        参数模型是指利用有限参数描述的系统模型。

        差分方程参数模型根据模型中是否含有随机扰动,又可分为确定性模型随机模型。这里仅介绍单输入单输出( SISO) 离散系统参数模型。

3.系统辨识的步骤

        利用辨识的方法(实验方法)建立系统的数学模型,从实验设计到最终模型的获得, 一般需要经历如下步骤:根据辨识的目的,利用先验知识,初步确定模型结构;采集输入/输出数据并进行相关处理,然后进行模型结构辨识和模型参数辨识;最后经过验证获得最终模型。

4.最小二乘法(Least Squares Method)一般步骤

非线性最小二乘法是一种用于优化非线性系统模型的数学方法,它通过迭代过程来逐步逼近最优解。这种方法在处理非线性系统时非常有用,因为它允许模型在数据拟合过程中具有更灵活的形式。以下是使用非线性最小二乘法优化非线性系统模型的非线性最小二乘法:

  1. 模型建立:首先,你需要建立一个非线性模型,该模型能够描述系统的行为。这个模型通常形式为 f(x,θ)f(x,θ),其中 xx 是输入变量,θθ 是模型参数。

  2. 定义残差函数:残差函数 r(θ)r(θ) 表示模型预测值与实际观测值之间的差异。在最小二乘法中,目标是最小化这个残差的平方和。

  3. 选择初始参数:为模型参数 θθ 选择一个初始值。这个初始值可以基于经验、先前的研究或其他估计方法得到。

  4. 迭代优化:使用如高斯-牛顿法、牛顿法或梯度下降法等迭代算法来更新参数 θθ。这些方法通过计算残差函数的梯度和/或海塞矩阵(Hessian)来寻找误差平方和的最小值。

  5. 收敛判断:在每次迭代后,检查参数更新是否足够小,或者残差是否已经足够接近零。如果满足收敛条件,则停止迭代;否则,继续迭代。

  6. 模型验证:一旦找到最优参数,使用这些参数在模型中进行预测,并与实际数据进行比较,以验证模型的准确性。

5.LSM原理及应用

        最小二乘法原理:未知量的最可能值是使各项实际观测值和计算值之间差的平方乘以其精确度的数值以后的和最小。

也就是说:

下面举一个例子说明算法原理:

通过试验确定热敏电阻阻值和温度之间的关系:

其中R = a + bt

对于上面的例子,在matlab中实现并进行计算:

clear;
t = [20.5 26 32.7 40 51 61 73 80 88 95.7];
R = [765 790 826 850 873 910 942 980 1010 1022];
figure;
plot(t,R,"*");
hold on;
N = numel(t);%最小二乘法拟合线性模型参数
den = N*sum(t.^2) - sum(t)^2;
a = (sum(R)*sum(t.^2) - sum(R.*t)*sum(t))/den
b = (N*sum(R.*t) - sum(R)*sum(t))/den%绘制拟合直线
t1 = 1:100;
R1 = a + b*t1;
plot(t1, R1);%计算温度t2 = 70对应的组织
t2 = 70;
R2 = a + b*t2

补充:如果希望将数据点连接起来,可以将plot语句改成:plot(t,R,"*-");

输出结果如下:

6.LSM在控制系统建模中的应用

算法原理:

注意事项:

伪随机序列(M序列)的产生:

matlab代码:

clear;n = 4; %四个移位寄存器
L = 2^n-1; %M序列的周期
mag = 5; %M序列的幅值
y1 = 1; y2 = 1; y3 = 1; y4 = 0; %四个移位寄存器的初始值for i = 1:L
x1 = xor(y3,y4);
x2 = y1;
x3 = y2;
x4 = y3;
y(i) = y4;
if y(i) > 0.5
u(i) = -mag;
else
u(i) = mag;
end
y1 = x1;
y2 = x2;
y3 = x3;
y4 = x4;
endfigure(1); stem(u); grid on;
title('输入如信号M序列')
生成的信号如下:

本文仅作为个人笔记使用,源自:Matlab系统辨识 - Yu_tiann - 博客园 (cnblogs.com)icon-default.png?t=O83Ahttps://www.cnblogs.com/yutian-blogs/p/15775734.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/431975.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣P1706全排列问题 很好的引入暴力 递归 回溯 dfs

代码思路是受一个洛谷题解里面大佬的启发。应该算是一个dfs和回溯的入门题目&#xff0c;很好的入门题目了下面我会先给我原题解思路我想可以很快了解这个思路。下面是我自己根据力扣大佬写的。 我会进行详细讲解并配上图辅助理解大家请往下看 #include<iostream> #inc…

【机器学习】Flux.jl 生态

官方API https://fluxml.ai/Flux.jl/stable/ecosystem/ 官网给出了 Flux’s model-zoo&#xff0c; 是一个庞大的案例库&#xff0c; 可以提供直观的参考&#xff0c; 并且还列举了基于 Flux.jl 开发的第三方库。 机器视觉 ObjectDetector.jl YOLO 抓取的“预备跑” 图像Met…

使用vite+react+ts+Ant Design开发后台管理项目(一)

前言 本文将引导开发者从零基础开始&#xff0c;运用vite、react、react-router、react-redux、Ant Design、less、tailwindcss、axios等前沿技术栈&#xff0c;构建一个高效、响应式的后台管理系统。通过详细的步骤和实践指导&#xff0c;文章旨在为开发者揭示如何利用这些技…

SpringCloud Alibaba之Seata处理分布式事务

&#xff08;学习笔记&#xff0c;必用必考&#xff09; 问题&#xff1a;Transactional 的9种失效场景&#xff1f; 1、介绍 1.1、简介 官网地址&#xff1a;Apache Seata 源码地址&#xff1a;Releases apache/incubator-seata GitHub Seata是一款开源的分布式事务解决…

Thinkphp5x远程命令执行 靶场攻略

环境配置 靶场&#xff1a;vulhub/thinkphp/5-rce docker-compose up -d #启动环境 漏洞复现 1.访问靶场&#xff1a;http://172.16.1.198:8080/ 2.远程命令执⾏ POC&#xff1a; ?sindex/think\app/invokefunction&functioncall_user_func_array&vars[0]system…

【VUE_ruoyi-vue】基于ruoyi-vue框架实现简单的系统通用文件模块

基于ruoyi-vue框架&#xff0c;新增一个简单的系统通用文件模块&#xff0c;服务与各个模块涉及到文件上传信息的记录和相关展示 运行sql,创建数据库表 DROP TABLE IF EXISTS sys_file_info; CREATE TABLE sys_file_info (id int(11) NOT NULL AUTO_INCREMENT COMMENT id,lin…

在虚幻引擎中实时显示帧率

引擎自带了显示帧率的功能 但是只能在编辑器中显示 , 在游戏发布后就没有了 , 所以我们要自己做一个 创建一个控件蓝图 创建画布和文本 , 修改文本 文本绑定函数 , 点击创建绑定 添加一个名为 FPS 的变量 格式化文本 用大括号把变量包起来 {FPS Int} FPS 然后转到事件图表…

机器学习算法与Python实战 | 三万字详解!GPT-5:你需要知道的一切(下)建议收藏!

本文来源公众号“机器学习算法与Python实战”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;三万字详解&#xff01;GPT-5&#xff1a;你需要知道的一切 作者&#xff1a;Alberto Romero &#xff08;青稞AI整理&#xff09; 原…

Go语言基础学习01-Liunx下Go开发环境配置;源码组织方式;go build/install/get详解

目录 Linux环境下配置安装VScode并配置Go语言开发环境Go语言源码的组织方式Go语言源码安装后的结果Go程序构建和安装的过程go build扩展go get 命令详解 之前学习过Go语言&#xff0c;学习的时候没有记录笔记&#xff0c;最近找了个极客时间的Go语言36讲&#xff0c;打算时间学…

第 1 章:Vue 核心

1. Vue 简介 1.1. 官网 英文官网: https://vuejs.org/中文官网: https://cn.vuejs.org/&#xff1a;中文官网里面【教程】和【API】是比较重要的。用到api就去查询&#xff0c;实践当中记忆更牢靠。 风格指南&#xff1a;官方推荐写的一个代码风格cookbook&#xff1a;编写v…

QT窗口无法激活弹出问题排查记录

问题背景 问题环境 操作系统: 银河麒麟V10SP1qt版本 : 5.12.12 碰见了一个问题应用最小化,然后激活程序窗口无法弹出 这里描述一下代码的逻辑,使用QLocalServer实现一个单例进程,具体的功能就是在已存在一个程序A进程时,再启动这个程序A,新的程序A进程会被杀死,然后激活已存…

视频汇聚EasyCVR视频监控平台调取接口提示“认证过期”是什么原因?

视频汇聚EasyCVR视频监控平台&#xff0c;作为一款智能视频监控综合管理平台&#xff0c;凭借其强大的视频融合汇聚能力和灵活的视频能力&#xff0c;在各行各业的应用中发挥着越来越重要的作用。EasyCVR平台具备强大的拓展性和灵活性&#xff0c;支持多种视频流的外部分发&…

Kolmogorov-Arnold——代替 MLP以提高模型的代表性和性能

前言 论文地址&#xff1a;https://arxiv.org/abs/2409.10594 源码地址&#xff1a;https://github.com/Adamdad/kat.git 传统的变压器模型使用多层感知器&#xff08;MLP&#xff09;来混合通道间的信息&#xff0c;而本文则使用了科尔莫哥罗德网络&#xff08;KAN&#xff0…

golang操作mysql利器-gorm

1、傻瓜示例 GORM通过将数据库表中的数据映射到面向对象的模型中&#xff0c;简化了数据库操作&#xff0c;使得开发者可以很方便的使用代码来操作数据库&#xff0c;而无需编写SQL语句。 目前有个mysql表&#xff1a;miniprogram_orders&#xff0c;其存储了所有用户对应的订…

Go容器化微服务系统实战

1-1 本课的go微服务有什么不同&#xff1f; 聚焦于容器化可观测的购物微服务系统实战&#xff0c;通过介绍Go语言的应用趋势、容器化优势及微服务适用性&#xff0c;旨在解决学习微服务过程中遇到的难点。课程内容涵盖微服务整体架构、技术工具框架及容器平台等关键技术&#…

GPT-4o在matlab编程中性能较好,与智谱清言相比

边标签由矩阵给出 s [1 2 3 3 3 3 4 5 6 7 8 9 9 9 10]; t [7 6 1 5 6 8 2 4 4 3 7 1 6 8 2]; G graph(s,t); plot(G) ------------------- GPT-4o给出的代码可用&#xff0c; clc;clear; % 定义边的起点和终点 s [1 2 3 3 3 3 4 5 6 7 8 9 9 9 10]; t [7 6 1 5 6 8 2 …

百度amis框架经验分享

百度amis框架经验分享 官方文档 amis - 低代码前端框架 这篇文章讲了amis的设计 为什么说百度AMIS框架是一个优秀的设计_百度前端框架-CSDN博客 学习方法&#xff1a; 最好的学习方法就是GPT官方文档 不要去很大力气通读官方文档&#xff0c;大概浏览一遍就行&#xff0c; 以你…

JS面试真题 part6

JS面试真题 part6 26、如何判断一个元素是否在可视区域中27、什么是单点登录&#xff1f;如何实现28、 如何实现上拉加载&#xff0c;下拉刷新29、说说你对正则表达式的理解&#xff1f;应用场景&#xff1f;30、说说你对函数式编程的理解&#xff1f;优缺点 26、如何判断一个元…

MySQL 主从复制部署与优化

文章目录 前言 在现代数据库管理中&#xff0c;MySQL 主从复制是一种关键技术&#xff0c;用于提高数据的可用性和性能。随着 Docker 容器技术的普及&#xff0c;利用 Docker 搭建 MySQL 主从复制环境已成为一种趋势&#xff0c;它提供了一种简便、高效且可扩展的解决方案。本…

某建筑市场爬虫数据采集逆向分析

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 目标网站 aHR0cHM6Ly9qenNjLm1vaHVyZC5nb3YuY24vZGF0YS9jb21wYW55P2NvbXBsZXhuYW1lPSVFNiVCMCVCNA 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面…