题目来源
850. 矩形面积 II - 力扣(LeetCode)
题目描述
给你一个轴对齐的二维数组 rectangles 。
对于 rectangle[i] = [x1, y1, x2, y2],其中(x1,y1)是矩形 i 左下角的坐标, (xi1, yi1) 是该矩形 左下角 的坐标, (xi2, yi2) 是该矩形 右上角 的坐标。
计算平面中所有 rectangles 所覆盖的 总面积 。任何被两个或多个矩形覆盖的区域应只计算 一次 。
返回 总面积 。因为答案可能太大,返回 10^9 + 7 的 模 。
示例
示例 1:
输入:rectangles = [[0,0,2,2],[1,0,2,3],[1,0,3,1]] 输出:6 解释:如图所示,三个矩形覆盖了总面积为 6 的区域。 从(1,1)到(2,2),绿色矩形和红色矩形重叠。 从(1,0)到(2,3),三个矩形都重叠。
示例 2:
输入:rectangles = [[0,0,1000000000,1000000000]] 输出:49 解释:答案是 1018 对 (109 + 7) 取模的结果, 即 49 。
提示
- 1 <= rectangles.length <= 200
- rectanges[i].length = 4
- 0 <= xi1, yi1, xi2, yi2 <= 10^9
题目解析
本题如果从 ”面“ 的角度去思考,比如:所有矩形的面积 - 矩形交集部分的面积 = 最终面积。
两个矩形的交集很容易求解,比如下面图示
虽然矩形交集很容易求解,但是想要求出所有交集,则需要让每个矩形和剩余其他矩形尝试比较,得出交集。同时求出交集矩形后,这些交集矩形也是可能互相重叠的 。。。交集的交集矩形也是可能互相重叠的。。。这样是无穷无尽的求解。因此这个思路不可取。
本题如果从 ”线“ 的角度去思考,如下图所示,从假设有一条扫描线 x = c(x1 ≤ c ≤ x4),从左向右扫描,每扫描到一个位置,则判断该位置是否有矩形覆盖,如果有矩形覆盖,比如:
- 图1 ~ 图3 中扫描线只覆盖到了矩形[左下角(x1,y1),右上角(x2,y2)],因此矩形覆盖的高度为 ( y2 - y1),对应扫描线扫描出的矩形面积 = (x3 - x1) * ( y2 - y1)
- 图4 ~ 图5 中扫描线覆盖了两个矩形,分别是 [左下角(x1,y1),右上角(x2,y2)] 和 [左下角(x3,y3),右上角(x4,y4)],因此矩形覆盖的高度区间也有两个: [y1, y2] 和 [y3, y4],而这两个区间又是具有重叠部分的,因此我们可以转化为区间问题,利用区间问题解法,求解出所有区间的不重叠长度之和 height 。具体求解过程在下面。那么扫描线扫描出来的面积为 (x2 - x3) * h。
- 首先,排序区间,按照起始位置升序,如果起始位置相同,则按照结束位置降序
- 然后,遍历区间,假设当前区间是 [start, end],上一个区间是 [last_start, last_end],
若 last_end >= end,那么说明当前区间被上一个区间完全覆盖,可以继续忽略当前区间(因为当前区间的长度已经在上一个区间被统计过了)
若 last_end < end,那么当前区间的非重叠部分为 [max(start, last_end), end],统计该部分长度:height += end - max(start, last_end),并更新last_end = end - 最后,我们就求出了区间组所有区间覆盖的不重叠长度了。
上面这种思路就是 ”扫描线算法“,扫描线法可以将 "面" 的问题,分解为 "线" 的问题,将 "矩形(面)交集问题" 降解为 "区间(线)交集问题"。
C源码实现
#define MAX_N 200
#define MOD (1e9 + 7)int cmp(const void* a, const void* b) { return *(int*)a - *(int*)b; }int cmp2(const void* a, const void* b) {int* A = (int*)a;int* B = (int*)b;return A[0] != B[0] ? A[0] - B[0] : B[1] - A[1];
}int rectangleArea(int** rectangles, int rectanglesSize, int* rectanglesColSize) {// 统计所有矩形的左边边、右边边所在位置的x坐标int listX[MAX_N];int listX_size = 0;for (int i = 0; i < rectanglesSize; i++) {listX[listX_size++] = rectangles[i][0]; // 矩形左边边x坐标位置listX[listX_size++] = rectangles[i][2]; // 矩形右边边x坐标位置}// 所有x坐标升序(每个x视为一条扫描线)qsort(listX, listX_size, sizeof(int), cmp);// 记录所有矩形并集面积long ans = 0;for (int i = 1; i < listX_size; i++) {// 前一个扫描线x坐标int preX = listX[i - 1];// 当前扫描线x坐标int curX = listX[i];// 相邻两个扫描线的距离long width = curX - preX;// 距离为0, 则跳过if (width == 0)continue;// 将在[x1,x2]区间上的矩形片段(垂直方向高度区间)收集起来int lines[MAX_N][2];int lines_size = 0;// 遍历每个矩形for (int j = 0; j < rectanglesSize; j++) {// 矩形左上角坐标(x1,y1), 矩形右下角坐标(x2,y2)int x1 = rectangles[j][0], y1 = rectangles[j][1],x2 = rectangles[j][2], y2 = rectangles[j][3];// 如果矩形包含了 [x1, x2] 区间if (x1 <= preX && curX <= x2) {// 那么该矩形在 水平方向区间[x1, x2] 对应的 垂直方向区间为 [y2, y1]lines[lines_size][0] = y1;lines[lines_size][1] = y2;lines_size++;}}// 将处于水方向区间 [x1, x2] 的所有垂直方向区间排序:按照起始位置升序, 如果起始位置相同, 则按照结束位置降序,这样排序的目的是保证排序后,前面的区间尽可能可以覆盖后面的区间qsort(lines, lines_size, sizeof(lines[0]), cmp2);// 记录lines多个区间,求长度之和,(重叠部分只计算一次)long height = 0;int last_end = -1;for (int j = 0; j < lines_size; j++) {int start = lines[j][0];int end = lines[j][1];// 如果 last_end >= end, 则当前区间被上一个区间完全覆盖,因此可以跳过// 如果 last_end < endif (last_end < end) {// 则当前区间的不重叠部分是 [max(start, last_end), end]height += end - (int)fmax(start, last_end);// 更新last_endlast_end = end;}}// 当前扫描线扫描到的面积为 width * heightans += width * height;ans %= (int)MOD;}return (int)ans;
}
C++源码实现
#define MOD (1E9 + 7)class Solution {
public:int rectangleArea(vector<vector<int>>& rectangles) {// 统计所有矩形的左边边、右边边所在位置的x坐标vector<int> listX;for (vector<int>& rect : rectangles) {listX.emplace_back(rect[0]); // 矩形左边边x坐标位置listX.emplace_back(rect[2]); // 矩形右边边x坐标位置}// 所有x坐标升序(每个x视为一条扫描线)sort(listX.begin(), listX.end());// 记录所有矩形并集面积long ans = 0;for (int i = 1; i < listX.size(); i++) {// 前一个扫描线x坐标int preX = listX[i - 1];// 当前扫描线x坐标int curX = listX[i];// 相邻两个扫描线的距离long width = curX - preX;// 距离为0, 则跳过if (width == 0)continue;// 将在[x1,x2]区间上的矩形片段(垂直方向高度区间)收集起来vector<vector<int>> lines;// 遍历每个矩形for (vector<int>& rect : rectangles) {// 矩形左下角坐标(x1,y1), 矩形右上角坐标(x2,y2)int x1 = rect[0], y1 = rect[1], x2 = rect[2], y2 = rect[3];// 如果矩形包含了 [x1, x2] 区间if (x1 <= preX && curX <= x2) {// 那么该矩形在 水平方向区间[x1, x2] 对应的 垂直方向区间为 [y1, y2]lines.emplace_back(vector<int>{y1, y2});}}// 将处于水方向区间 [x1, x2]// 的所有垂直方向区间排序:按照起始位置升序, 如果起始位置相同,// 则按照结束位置降序,这样排序的目的是保证排序后,前面的区间尽可能可以覆盖后面的区间sort(lines.begin(), lines.end(),[](vector<int>& lineA, vector<int>& lineB) {if (lineA[0] != lineB[0]) {return lineA[0] < lineB[0];} else {return lineA[1] > lineB[1];}});// 记录lines多个区间,求长度之和,(重叠部分只计算一次)long height = 0;int last_end = INT_MIN;for (vector<int>& line : lines) {int start = line[0];int end = line[1];// 如果 last_end >= end,// 则当前区间被上一个区间完全覆盖,因此可以跳过 如果 last_end <// endif (last_end < end) {// 则当前区间的不重叠部分是 [max(start, last_end), end]height += end - max(start, last_end);// 更新last_endlast_end = end;}}// 当前扫描线扫描到的面积为 width * heightans += width * height;ans %= (int) MOD;}return (int) ans;}
};
Java源码实现
class Solution {public int rectangleArea(int[][] rectangles) {// 统计所有矩形的左边边、右边边所在位置的x坐标ArrayList<Integer> listX = new ArrayList<>();for (int[] rect : rectangles) {listX.add(rect[0]);listX.add(rect[2]);}// 所有x坐标升序(每个x视为一条扫描线)listX.sort((a, b) -> a - b);// 记录所有矩形并集面积long ans = 0;for (int i = 1; i < listX.size(); i++) {// 前一个扫描线x坐标int preX = listX.get(i - 1);// 当前扫描线x坐标int curX = listX.get(i);// 相邻两个扫描线的距离int width = curX - preX;// 距离为0, 则跳过if (width == 0)continue;// 将在[x1,x2]区间上的矩形片段(垂直方向高度区间)收集起来ArrayList<int[]> lines = new ArrayList<>();// 遍历每个矩形for (int[] rect : rectangles) {// 矩形左下角坐标(x1,y1), 矩形右上角坐标(x2,y2)int x1 = rect[0], y1 = rect[1], x2 = rect[2], y2 = rect[3];// 如果矩形包含了 [x1, x2] 区间if (x1 <= preX && curX <= x2) {// 那么该矩形在 水平方向区间[x1, x2] 对应的 垂直方向区间为 [y1, y2]lines.add(new int[] { y1, y2 });}}// 将处于水方向区间 [x1, x2] 的所有垂直方向区间排序:按照起始位置升序, 如果起始位置相同,则按照结束位置降序,// 这样排序的目的是保证排序后,前面的区间尽可能可以覆盖后面的区间lines.sort((lineA, lineB) -> lineA[0] != lineB[0] ? lineA[0] - lineB[0] : lineB[1] - lineA[1]);// 记录lines多个区间,求长度之和,(重叠部分只计算一次)int height = 0;int last_end = -1;for (int[] line : lines) {int start = line[0];int end = line[1];// 如果 last_end >= end, 则当前区间被上一个区间完全覆盖,因此可以跳过// 如果 last_end < endif (last_end < end) {// 则当前区间的不重叠部分是 [max(start, last_end), end]height += end - Math.max(start, last_end);// 更新last_endlast_end = end;}}// 当前扫描线扫描到的面积为 width * heightans += (long) width * height;ans %= (int) (1e9 + 7);}return (int) ans;}
}
Python源码实现
class Solution(object):def rectangleArea(self, rectangles):""":type rectangles: List[List[int]]:rtype: int"""# 统计所有矩形的左边边、右边边所在位置的x坐标listX = []for rect in rectangles:listX.append(rect[0]) # 矩形左边边x坐标位置listX.append(rect[2]) # 矩形右边边x坐标位置# 所有x坐标升序(每个x视为一条扫描线)listX.sort()# 记录所有矩形并集面积ans = 0for i in range(1, len(listX)):# 前一个扫描线x坐标preX = listX[i - 1]# 当前扫描线x坐标curX = listX[i]# 相邻两个扫描线的距离width = curX - preX# 距离为0, 则跳过if width == 0:continue# 将在[x1,x2]区间上的矩形片段(垂直方向高度区间)收集起来lines = []# 遍历每个矩形# 矩形左下角坐标(x1,y1),矩形右上角坐标(x2,y2)for x1, y1, x2, y2 in rectangles:# 如果矩形包含了 [x1, x2] 区间if x1 <= preX and curX <= x2:# 那么该矩形在 水平方向区间[x1, x2] 对应的 垂直方向区间为 [y1, y2]lines.append((y1, y2))# 将处于水方向区间 [x1, x2] 的所有垂直方向区间排序:按照起始位置升序, 如果起始位置相同, 则按照结束位置降序,这样排序的目的是保证排序后,前面的区间尽可能可以覆盖后面的区间lines.sort(key=lambda line: (line[0], -line[1]))# 记录lines多个区间,求长度之和,(重叠部分只计算一次)height = 0# 题目说坐标范围 [-100, 100], 因此对应 [?, -101] 的区间必然不会和任何区间相交last_end = -1# 如果 last_end >= end, 则当前区间被上一个区间完全覆盖,因此可以跳过# 如果 last_end < endfor start, end in lines:if last_end < end:# 则当前区间的不重叠部分是 [max(start, last_end), end]height += end - max(start, last_end)# 更新last_endlast_end = end# 当前扫描线扫描到的面积为 width * heightans += width * heightreturn ans % 1000000007
JavaScript源码实现
/*** @param {number[][]} rectangles* @return {number}*/
var rectangleArea = function (rectangles) {// 统计所有矩形的左边边、右边边所在位置的x坐标const listX = [];for (let rect of rectangles) {listX.push(rect[0]); // 矩形左边边x坐标位置listX.push(rect[2]); // 矩形右边边x坐标位置}// 所有x坐标升序(每个x视为一条扫描线)listX.sort((a, b) => a - b);// 记录所有矩形并集面积let ans = 0n;for (let i = 1; i < listX.length; i++) {// 前一个扫描线x坐标const preX = listX[i - 1];// 当前扫描线x坐标const curX = listX[i];// 相邻两个扫描线的距离const width = curX - preX;// 距离为0, 则跳过if (width == 0) continue;// 将处于[x1,x2]区间上的矩形片段(垂直方向高度区间)收集起来const lines = [];// 遍历每个矩形// 矩形左下角坐标(x1,y1),矩形右上角坐标(x2,y2)for (let [x1, y1, x2, y2] of rectangles) {// 如果矩形有片段处于 [x1, x2] 区间if (x1 <= preX && curX <= x2) {// 那么该矩形在 水平方向区间[x1, x2] 对应的 垂直方向区间为 [y1, y2]lines.push([y1, y2]);}}// 将处于水方向区间 [x1, x2] 的所有垂直方向区间排序:按照起始位置升序, 如果起始位置相同, 则按照结束位置降序,这样排序的目的是保证排序后,前面的区间尽可能可以覆盖后面的区间lines.sort((lineA, lineB) =>lineA[0] != lineB[0] ? lineA[0] - lineB[0] : lineB[1] - lineA[1]);// 记录lines多个区间,求长度之和,(重叠部分只计算一次)let height = 0;let last_end = -1;for (let [start, end] of lines) {// 如果 last_end >= end, 则当前区间被上一个区间完全覆盖,因此可以跳过// 如果 last_end < endif (last_end < end) {// 则当前区间的不重叠部分是 [max(start, last_end), end]height += end - Math.max(start, last_end);// 更新last_endlast_end = end;}}// 当前扫描线扫描到的面积为 width * heightans += BigInt(width) * BigInt(height);}return Number(ans % 1000000007n);
};