大数据处理从零开始————3.Hadoop伪分布式和分布式搭建

1.伪分布式搭建(不会用,了解就好不需要搭建)

        这里接上一节。

1.1 伪分布式集群概述

        伪分布式集群就是只有⼀个服务器节点的分布式集群。在这种模式中,我们也是只需要⼀台机器。 但与本地模式不同,伪分布式采⽤了分布式的思想,具有完整的分布式⽂件存储和分布式计算的特 点。在进⾏存储和计算时,将涉及到的相关守护进程都运⾏在同⼀台机器上,它们都是独⽴的 Java进程,因⽽称为“伪分布式集群”。 伪分布式集群模式,⽐本地模式多了代码调试功能,允许检查内存的使⽤、HDFS输⼊输出、以及 其他的守护进程交互情况。

1.2 关闭selinux

        把selinux关闭掉,这是Linux系统的⼀个安全机制,可以进⼊⽂件中将SELINUX设置为 disabled。

vim /etc/selinux/config

        把代码中SELINUX修改或添加为:

SELINUX=disabled

1.3 修改配置⽂件

cd /opt/module/hadoop/etc/hadoop/
ll   #查看目录文件

        下面这些文件都会有。

1.3.1 core-site.xml⽂件(记住修改下方主机名)

<configuration>  <!-- 设置namenode节点 -->  <!-- 注意: hadoop1.x时代默认端口是9000;hadoop2.x时代默认端口是8020;  hadoop3.x时代默认端口是9820 -->  <property>  <name>fs.defaultFS</name>  <value>hdfs://hadoop100:9820</value>  </property>  <!-- hdfs的基础路径,被其他属性所依赖的一个基础路径 -->  <property>  <name>hadoop.tmp.dir</name>  <value>/opt/module/hadoop/tmp</value>  </property>  
</configuration>

1.3.2 hdfs-site.xml⽂件(记住修改下方主机名)

<configuration><property><name>dfs.replication</name><value>1</value></property><!-- secondarynamenode守护进程的http地址:主机名和端口号。参考守护进程布局 --><property><name>dfs.namenode.secondary.http-address</name><value>hadoop100:9868</value></property><!-- namenode守护进程的http地址:主机名和端口号。参考守护进程布局 --><property><name>dfs.namenode.http-address</name><value>hadoop100:9870</value></property>
</configuration>

1.3.3 hadoop-env.sh⽂件(记住修改下方主机名)

export JAVA_HOME=/opt/module/jdk# Hadoop3中,需要添加如下配置,设置启动集群⻆⾊的⽤户是哪个。
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root

1.4 格式化集群

        要注意,如果我们在core-site.xml中配置过hadoop.tmp.dir路径,在集群格式化时要保证这个路 径不存在!如果之前存在过数据,要先将其删除,再进⾏格式化!

hdfs namenode -format

        执⾏效果如下图所示:(注意对比下方点)

1.5 启动集群

 start-dfs.sh

        执⾏该命令后,⼀般会有如下提示:(这个一个不能少)!!!

Starting namenodes on [MyBigData]
Starting datanodes
Starting secondary namenodes [MyBigData]

1.6 查看进程

jps

执⾏该命令后,⼀般会有如下提示:(这个一个不能少)!!!

11090 Jps
10595 NameNode
10938 SecondaryNameNode
10763 DataNode

1.7 启动WebUI界⾯

        Hadoop伪集群模式给我们提供了⼀个WebUI界⾯,我们可以在浏览器中输⼊虚拟机的IP地址。如 果我们做过主机名映射,也可以直接使⽤主机名,⽐如http://192.168.10.100:9870。

1.8 演示案例-统计单词个数

1.8.1 准备数据

        接下来我们准备⼀些数据,在hadoop⽂件夹下创建⼀个myinput⽬录并进⼊。

mkdir myinput && cd myinput

        然后在该⽬录下创建两个file⽂件,并在其中输⼊⼀些内容:

echo "hello world hadoop linux hadoop" >> file1
echo "hadoop linux hadoop linux hello" >> file1
echo "hadoop linux mysql linux hadop" >> file1
echo "hadoop linux hadoop linux hello" >> file1
echo "linux hadoop good programmer" >> file2
echo "good programmer yyg good" >> file2

1.8.2 上传集群

        接下来我们需要将数据⽂件file1和file2上传到集群,以后我们再进⾏任务处理的数据就是HDFS数 据,不是Linux本地存储的了。

hdfs dfs -put ./myinput/ /
# 检查是否已经上传成功
hdfs dfs -ls -R /

        执⾏结果⼀般如下所示:

1.8.3 执⾏任务

        我们切换到⾃⼰的hadoop⽬录下,在该⽬录中执⾏如下命令:

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.3.jar wordcount ./myinput ./myoutput

        在运⾏该命令时,也可能会出现以下问题:

        以上问题则表明我们的Hadoop服务器虽然启动成功,但缺少了⼀个/user/root/input⽂件夹,我 们可以⼿动创建出来。

        解决过程如下:

# 确认该路径是否存在hdfs dfs -ls /user/root/input

        如果该路径确实不存在,则创建之:

# 创建input⽂件夹
hdfs dfs -mkdir -p /user/root/input
# 将file1和file2中的⽂件put到input中
[root@hd01 hadoop]# hdfs dfs -put ./input/file* /user/root/input

        接着我们重新执⾏如下命令即可:

# hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.3.jar wordcount ./input ./output

2.完全分布式搭建(需要做!!!)

2.1 完全分布式概述

        在真实的企业环境中,服务器集群会使⽤到多台机器共同配合,来构建⼀个完整的分布式⽂件系 统。⽽在这样的分布式⽂件系统中,HDFS相关的守护进程也会分布在不同的机器上,例如:

        ● NameNode守护进程,尽可能单独部署在⼀台硬件性能较好的机器中;

        ● 其他每台机器上都会部署⼀个DataNode守护进程,⼀般的硬件环境即可;

        ● SecondaryNameNode的守护进程最好不要和NameNode在同⼀台机器上。

2.2 集群规划部署

2.3 配置集群核⼼⽂件

2.3.1 core-site.xml⽂件

[root@hd01 ~]#  cd $HADOOP_HOME/etc/hadoop
[root@hd01 hadoop]# vim core-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><!-- 指定NameNode的地址 --><property><name>fs.defaultFS</name><value>hdfs://hd01:8020</value></property><!-- 指定hadoop数据的存储目录 --><property><name>hadoop.tmp.dir</name><value>/opt/module/hadoop/tmp</value></property><!-- 配置HDFS网页登录使用的静态用户为root --><property><name>hadoop.http.staticuser.user</name><value>root</value></property>
</configuration>

2.3.2 hdfs-site.xml⽂件

        打开该⽂件:

[root@hd01 hadoop]# vim hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>  
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>  
<configuration>  <!-- nn web端访问地址 -->  <property>  <name>dfs.namenode.http-address</name>  <value>hd01:9870</value>  </property>  <!-- 2nn web端访问地址,注意这的机器名称是hd03!!!-->  <property>  <name>dfs.namenode.secondary.http-address</name>  <value>hd03:9868</value>  </property>  
</configuration>  

2.3.3 yarn-site.xml⽂件

        打开yarn-site.xml:

[root@hd01 hadoop]# vim yarn-site.xml
<?xml version="1.0" encoding="UTF-8"?>  
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>  
<configuration>  <!-- 指定MR⾛shuffle -->  <property>  <name>yarn.nodemanager.aux-services</name>  <value>mapreduce_shuffle</value>  </property>  <!-- 指定ResourceManager的地址, 注意这⾥的机器名称是hd02!!!-->  <property>  <name>yarn.resourcemanager.hostname</name>  <value>hd02</value>  </property>  <!-- 环境变量的继承 -->  <property>  <name>yarn.nodemanager.env-whitelist</name>  <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>  </property>  <!-- 不验证虚拟内存⼤⼩ -->  <property>  <name>yarn.nodemanager.vmem-check-enabled</name>  <value>false</value>  <description>Whether virtual memory limits will be enforced for containers</description>  </property>  <property>  <name>yarn.nodemanager.vmem-pmem-ratio</name>  <value>4</value>  <description>Ratio between virtual memory to physical memory when setting memory limits for containers</description>  </property>  
</configuration>

2.3.4 mapred-site.xml⽂件

[root@hd01 hadoop]# vim mapred-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><!-- 指定MapReduce程序运行在Yarn上 --><property><name>mapreduce.framework.name</name><value>yarn</value></property>
</configuration>

2.3.5 hadoop-env.sh⽂件

[root@hd01 hadoop]# vim hadoop-env.sh

增加如下内容:!!!!这里是增加

export JAVA_HOME=/opt/module/jdk# Hadoop3中,需要添加如下配置,设置启动集群⻆⾊的⽤户是谁
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

2.3.6 works⽂件

        打开works⽂件:

root@hd01 hadoop]# vim /opt/module/hadoop/etc/hadoop/workers
hd01
hd02
hd03

        注意: 该⽂件中添加的内容,其结尾不允许有空格,⽂件中不允许有空⾏!

2.3.7 分发配置⽂件

        在配置好了以上核⼼⽂件之后,我们要在集群上分发配置好的这些Hadoop配置⽂件。

[root@hd01 hadoop]# xsync /opt/module/hadoop/etc/hadoop/

2.4 格式化集群

        如果集群是第⼀次启动,需要在hd01节点上格式化NameNode。

[root@hd01 hadoop]# hdfs namenode -format

2.5 集群启动⽅式

        在这⾥启动的⽅式有两种,⼀种是⼀个节点⼀个节点的启动,⼀种是 编写⼀个启动脚本

2.5.1 单节点启动/关闭⽅式

1 启动HDFS

[root@hd01 hadoop]# /opt/module/hadoop/sbin/start-dfs.sh

2. 启动YARN

        我们可以在在配置了ResourceManager的节点(hd02)上启动yarn:

[root@hd02 hadoop]# /opt/module/hadoop/sbin/start-yarn.sh

        启动节点后,我们就可以在Web端查看HDFS的NameNode了。我们在浏览器中输⼊: http://192.168.10.104:9870。然后我们查看Datanodes选项下,看看启动的个数是否为3,不为 3则说明环境配置有问题。

        我 们 也 可 以 在 Web 端 查 看 YARN 的 ResourceManager , 在 浏 览 器 中 输 ⼊ : http://192.168.10.105:8088。查看⾸⻚Active Nodes是否为3,不为3则说明环境配置有问题。

3. 关闭单节点

        我们可以将各个模块分开启动,也可以分开停⽌,前提是⼤家已经配置了ssh。

# 停⽌HDFS
[root@hd01 ~]# stop-dfs.sh
#停⽌YARN
start-yarn.sh/stop-yarn.sh

        或者我们将各个服务组件逐⼀启动/停⽌。

# 分别启动/停⽌HDFS组件
[root@hd01 ~]# hdfs --daemon start/stop namenode/datanode/secondarynamenode
# 启动/停⽌YARN
[root@hd01 ~]# yarn --daemon start/stop resourcemanager/nodemanager

2.5.2 脚本启动⽅式(重点)

        如果我们⼀个节点⼀个节点的启动,会很麻烦,后续进⾏关闭时更麻烦,所以⽐较好的启动与关闭 ⽅式是编写⼀个启动和关闭脚本。

1.编写脚本

        我们先编写⼀个Hadoop集群的启停脚本,包含HDFS、Yarn、Historyserver,脚本⽂件名为 myhadoop.sh。

[root@hd01 ~]# cd /root
[root@hd01 ~]# vim myhadoop.sh
#!/bin/bash  if [ $# -lt 1 ]; then  echo "No Args Input..."  exit  
fi  case $1 in  "start")  echo " =================== 启动 hadoop集群 ==================="  echo " --------------- 启动 hdfs ---------------"  ssh hd01 "/opt/module/hadoop/sbin/start-dfs.sh"  echo " --------------- 启动 yarn ---------------"  ssh hd02 "/opt/module/hadoop/sbin/start-yarn.sh"  ;;  "stop")  echo " =================== 关闭 hadoop集群 ==================="  echo " --------------- 关闭 yarn ---------------"  ssh hd02 "/opt/module/hadoop/sbin/stop-yarn.sh"  echo " --------------- 关闭 hdfs ---------------"  ssh hd01 "/opt/module/hadoop/sbin/stop-dfs.sh"  ;;  *)  echo "Input Args Error..."  ;;  
esac

2. 添加执⾏权限

chmod +x myhadoop.sh

3 关闭/开启所有hadoop进程

# 停⽌集群
[root@hd01 ~]# ./myhadoop.sh stop
# 开启集群
[root@hd01 ~]# ./myhadoop.sh start

2.6 编写查看集群进程的脚本

        我们通常是通过jps命令来查看hadoop的进程。

# 查看单个进程
[root@hd01 ~]#  jps

 1. 编写脚本

        这种⽅式只能查看单个节点上的进程,并不是很⽅便,我们可以编写⼀个⽤来查看集群进程的脚 本。我们先创建⼀个jpsall⽂件:

[root@hd01 ~]# vim jpsall
#!/bin/bash  for host in hd01 hd02 hd03; do  echo "=============== $host ==============="  ssh "$host" jps  
done

2. 添加执⾏权限

        保存后退出,然后赋予该脚本执⾏权限。

[root@hd01 bin]# chmod +x jpsall

3. 查看进程

[root@hd01 bin]# ./jpsall

2.7 分发脚本

        最后,我们把上⾯编写的脚本进⾏分发,以保证⾃定义的脚本可以在三台机器上都能使⽤。

[root@hd01 ~]# xsync /root/myhadoop.sh
[root@hd01 ~]# xsync /root/jpsall

2.8 集群测试

2.8.1 上传⽂件到集群

1.上传⼩⽂件

[root@hd01 ~]# hadoop fs -mkdir /input
[root@hd01 ~]# hadoop fs -put $HADOOP_HOME/wcinput/word.txt /input

2. 上传⼤文件

[root@hd01 ~]# hadoop fs -put /opt/software/jdk-8u421-linux-x64.tar.gz /

2.8.2 查看结果

        上传⽂件后,我们可以来查看⽂件存放在什么位置。查看HDFS⽂件的存储路径,标红部分每台电 脑可能不同,需要根据实际情况修改。

[root@hd01 ~]# cd /opt/module/hadoop/tmp/dfs/data/current/BP-35375740-192.168.10.104-1726820702869

        这个文件:BP-35375740-192.168.10.104-1726820702869  每个机器不一样需要自己转到相应这个位置,进入后接着下一步。进入下放完整路径。

[root@hd01 subdir0]# pwd
/opt/module/hadoop/tmp/dfs/data/current/BP-35375740-192.168.10.104-1726820702869/current/finalized/subdir0/subdir0

2.8.3 拼接⽂件

        我们可以利⽤hadoop中的命令,将多个⽂件拼接在⼀起,⽐如:

# ⽐如现在有如下多个⽂件:
总用量 144424
-rw-r--r--. 1 root root        49 9月  20 17:13 blk_1073741825
-rw-r--r--. 1 root root        11 9月  20 17:13 blk_1073741825_1001.meta
-rw-r--r--. 1 root root 134217728 9月  20 17:15 blk_1073741826
-rw-r--r--. 1 root root   1048583 9月  20 17:15 blk_1073741826_1002.meta
-rw-r--r--. 1 root root  12512099 9月  20 17:15 blk_1073741827
-rw-r--r--. 1 root root     97759 9月  20 17:15 blk_1073741827_1003.meta
# 我们可以将其拼接在⼀起
[root@hd01 subdir0]# cat blk_1073741826>>tmp.tar.gz
[root@hd01 subdir0]# cat blk_1073741827>>tmp.tar.gz
[root@hd01 subdir0]# tar -zxvf tmp.tar.gz

2.8.4 下载⽂件

[root@hd01 ~]# hadoop fs -get /jdk-8u212-linux-x64.tar.gz ./

2.8.5 执⾏wordcount程序

[root@hd01 ~]# cd /opt/module/hadoop
[root@hd01 hadoop]# hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.3.jar wordcount /input /output
[root@hd01 hadoop]# cat wcoutput/part-r-00000

2.9 统计单词格式

2.9.1 准备数据

[root@hd01 hadoop]# cd /root
[root@hd01 ~]# mkdir input && cd input
[root@hd01 input]#  echo "hello world hadoop linux hadoop" >> file1
[root@hd01 input]# echo "hadoop linux hadoop linux hello" >> file1
[root@hd01 input]#  echo "hadoop linux mysql linux hadop" >> file1
[root@hd01 input]#  echo "hadoop linux hadoop linux hello" >> file1
[root@hd01 input]# echo "linux hadoop programmer" >> file2
[root@hd01 input]#  echo "programmer jiayadong good" >> file2

2.9.2 上传到集群

# 将数据上传到HDFS
[root@hd01 input]# hdfs dfs -put ~/input/ /
# 检查是否已经上传成功
[root@hd01 input]# hdfs dfs -ls -R /
drwxr-xr-x - root supergroup 0 2022-01-28 13:11 /input
-rw-r--r-- 1 root supergroup 127 2022-01-28 13:11 /input/file1
-rw-r--r-- 1 root supergroup 59 2022-01-28 13:11 /input/file2

2.9.3 执⾏任务

 hdfs dfs -rm -r /outputhadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.3.jar wordcount /input /output

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/433348.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++简单缓冲区类设计

目录 1.引言 2.静态缓冲区 3.动态缓冲区 4.数据引用类 5.自动数据引用类 6.几种缓冲区的类关系图 7.注意事项 8.完整代码 1.引言 在C中&#xff0c;设计静态和动态缓冲区类时&#xff0c;需要考虑的主要差异在于内存管理的方式。静态缓冲区类通常使用固定大小的内存区域…

红绿灯倒计时读秒数字识别系统源码分享

红绿灯倒计时读秒数字识别检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of …

Power Automate 设置流Owner不生效的bug

在查找某个功能没生效时&#xff0c;定位到是一个Power automate的流停了&#xff0c;查看原因是因为创建流的owner被disable了 但是当把流的owner更新为可用的用户时&#xff0c;流依旧没被触发&#xff0c;触发的条件很简单&#xff0c;某个表的记录创建时&#xff0c;因为是…

Java流程控制语句——条件控制语句详解(附有流程图)#Java条件控制语句有哪些?#if-else、switch

在 Java 编程中&#xff0c;条件控制语句用于控制程序的执行路径&#xff0c;决定根据某些条件来选择执行某段代码或跳过某段代码。它们是 Java 编程的重要组成部分&#xff0c;帮助开发者根据不同的输入、状态或数据流来编写更加灵活和动态的代码。在本文中&#xff0c;我们将…

CORE MVC 过滤器 (筛选器)

MVC FrameWork MVCFramework MVC Core 过滤器 分 同步、异步 1、 授权筛选器 IAuthorizationFilter&#xff0c;IAsyncAuthorizationFilter 管道中运行的第一类筛选器&#xff0c;用来确定发出请求的用户是否有权限发出当前请求 2、资源筛选器 IResourceFilter &#xff0c;…

部分监督多器官医学图像分割中的标记与未标记分布对齐|文献速递--基于多模态-半监督深度学习的病理学诊断与病灶分割

Title 题目 Labeled-to-unlabeled distribution alignment for partially-supervised multi-organ medical image segmentation 部分监督多器官医学图像分割中的标记与未标记分布对齐 01 文献速递介绍 多器官医学图像分割&#xff08;Mo-MedISeg&#xff09;是医学图像分析…

【Python报错已解决】ModuleNotFoundError: No module named ‘tensorflow‘

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 专栏介绍 在软件开发和日常使用中&#xff0c;BUG是不可避免的。本专栏致力于为广大开发者和技术爱好者提供一个关于BUG解决的经…

DAY16||513.找树左下角的值 |路径总和|从中序与后序遍历序列构造二叉树

513.找树左下角的值 题目&#xff1a;513. 找树左下角的值 - 力扣&#xff08;LeetCode&#xff09; 给定一个二叉树的 根节点 root&#xff0c;请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 示例 1: 输入: root [2,1,3] 输出: 1示例 2: 输入: […

Techub专访顾荣辉教授:解密CertiK的安全战略路线

当 Web3 安全审计公司还在争抢审计份额时&#xff0c;CertiK 已经开始将目光瞄准即将进军 Web3 的传统商业巨头。CertiK 不仅在传统行业进行白帽行动获得如苹果公司的官方感谢&#xff0c;还是 Web3 行业唯一一家拥有 SOC 2 和 ISO 认证的 Web3 的安全公司。基于此&#xff0c;…

猫头虎 分享已解决Bug: || Module not found: Can‘t resolve ‘react‘ 解决方案

&#x1f42f;猫头虎 分享已解决Bug&#xff1a; || Module not found: Cant resolve react 解决方案 摘要: 今天猫头虎带大家解决一个常见的前端问题&#xff0c;尤其是在 React 项目中&#xff0c;很多开发者在安装依赖包时&#xff0c;遇到过 Module not found: Cant resol…

裁剪视频如何让画质不变?一文教会你

当我们想要从一段视频中提取精华&#xff0c;裁剪视频就成了必不可少的技能。 但是&#xff0c;如何做到在裁剪过程中不损害画质&#xff0c;保持视频原有的清晰度和流畅度呢&#xff1f; 这不仅需要技巧&#xff0c;还需要对视频编辑有一定的了解。 本文将为你介绍四种裁剪…

基于SSM的图书管理管理系统的设计与实现 (含源码+sql+视频导入教程)

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 基于SSM的图书管理管理系统4拥有两种角色&#xff0c;用户可以浏览评论图书、登录注册&#xff0c;管理员可以进行图书馆管理、用户管理、分类管理等功能 1.1 背景描述 图书书店销售管理…

jenkins声明式流水线语法详解

最基本的语法包含 pipeline&#xff1a;所有有效的声明式流水线必须包含在一个 pipeline 块中stages&#xff1a;包含一系列一个或多个stage指令stage&#xff1a;stage包含在stages中进行&#xff0c;比如某个阶段steps&#xff1a;在阶段中具体得执行操作&#xff0c;一个或…

了解网络的相关信息

文章目录 前言了解网络的相关信息1. ip是什么?1.1. 公网IP:1.2. 私有IP:1.2.1. 示例 2. 子网掩码3. 子网掩码的划分网段是什么4. 特殊的回路IP网段(127.0.0.1)5. 端口 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&#x…

VIGOSERVO帝人伺服驱动器维修ARN135-F ARS135-25

帝人VIGOSERVO驱动器维修TEIJIN SEIKI伺服驱动器全系列型号修理。 关于VIGOSERVO伺服驱动器维修的相关内容&#xff0c;可以归纳为以下几个方面&#xff1a; 一、维修概述 VIGOSERVO伺服驱动器作为自动化设备组件&#xff0c;多应用于工业机器人、数控加工等高精度传动系统中…

如何实现工业设备联网?天拓四方

一、引言 随着信息技术的快速发展&#xff0c;工业设备联网已成为推动工业4.0和智能制造的核心技术之一。工业设备联网通过将传统的工业设备与互联网、云计算、大数据等技术相结合&#xff0c;实现了设备之间的互联互通&#xff0c;数据共享与智能分析&#xff0c;极大地提高了…

CSS的弹性盒子模型(Flex box)

弹性盒子模型是CSS3的一种新的布局模式&#xff0c;弹性盒是一种当页面需要适应不同的屏幕大小以及设备类型时确保拥有合适的布局方式&#xff0c;引入弹性盒子模型的目的时提供更加有效的方式来对一个容器中的子元素进行排列&#xff0c;对齐和分配空白空间。 弹性盒子由弹性容…

[Redis][Set]详细讲解

目录 0.前言1.常用命令1.SADD2.SMEMBERS3.SISMEMBER4.SCARD5.SPOP6.SMOVE7.SREM 2.集合间操作0.是什么&#xff1f;1.SINTER2.SINTERSTORE3.SUNION4.SUNIONSTORE5.SDIFF6.SDIFFSTORE 3.内部编码1.intset(整数集合)2.hashtable(哈希表) 4.使用场景 0.前言 集合类型也是保存多个字…

BaseCTF2024 web

Web [Week1] HTTP 是什么呀 GET: ?basectf%77%65%31%63%25%30%30%6d%65POST: BaseflgX-Forwarded-For:127.0.0.1Referer: BaseCookie: c00k13i cant eat itUser-Agent: Base有Location跳转, 抓包得到flag: QmFzZUNURntkZGUzZjA0Yy1hMDg5LTQwNGMtOTFjNi01ODZjMzAxMzM3Y2J9Cg…

[element-ui]记录对el-table表头样式的一些处理

1、表头换行 & 列表项换行 可用element-table组件自带的方法实现列标题换行的效果 2、小圆点样式