单片机长短按简单实现

单片机长短按简单实现

目录

  • 单片机长短按简单实现
    • 1 原理
    • 2 示例代码
      • 2.1 按键实现
    • 3 测试log
    • 4 其他实现方式

1 原理

按键检测和处理的步骤如下:

1:定时扫描按键(使用定时器定时扫描,也可以用软件延时或者系统心跳之类的方式,总之能保证每次扫描间隔时间固定并且在一个较小的范围即可)。
2:扫描到有按键按下(通常是检测GPIO的电平状态来判断按键是否按下,具体情况需要结合实际硬件电路来看)。
3:开始计时,记录按键持续按下的时间。
4:若按下的时间达到了短按的时间(具体多长的时间为短按由自己定义),选择触发按键处理(按下即触发),或者先记录状态,等按键释放时再触发按键处理(弹起时触发)。
5:按键时间超过短按时间,继续计时。
6:按键时间达到长按时间(具体多长的时间为长按由自己定义),选择触发按键处理(按下即触发),或者先记录状态,等按键释放时再触发按键处理(弹起时触发)。

2 示例代码

该示例使用的GD32,共配置了4个按键,特点如下:

1:按键按下时电平为0,释放时为1。
2:短按时间为30ms。
3:长按时间为1s。
4:短按释放时触发按键处理。
5:长按按下时即触发按键处理。
6:按键扫描和按键处理均放在定时器中断服务函数,若按键处理的时间较长,建议分开操作(按键扫描还是放在中断,按键处理放在其他地方,以免长时间占用中断时间)。
7:按键处理我这里都是留空的,只用串口打印了一句话,表明已经触发了按键处理,具体处理什么东西看实际需求。

注:示例代码仅供参考,还需要按具体需求修改。

2.1 按键实现

key.c:

#include "key.h"
#include "main.h"key_t key1;
key_t key2;
key_t key3;
key_t key4;void timer_user_init(void);// 按键初始化
void key_user_init(void)
{/* enable the key clock */rcu_periph_clock_enable(KEY1_CLOCK);rcu_periph_clock_enable(KEY2_CLOCK);rcu_periph_clock_enable(KEY3_CLOCK);rcu_periph_clock_enable(KEY4_CLOCK);/* configure key gpio port */ gpio_init(KEY1_PORT, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, KEY1_PIN);gpio_init(KEY2_PORT, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, KEY2_PIN);gpio_init(KEY3_PORT, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, KEY3_PIN);gpio_init(KEY4_PORT, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, KEY4_PIN);timer_user_init();  // 启动定时器,定时扫描按键
}// 按键扫描
int key_scan(void)
{if(READ_KEY1_STATE == KEY_PRESSED && (key1.status == 0)){if(++key1.debounce > KEY_SHORT_PRESSED){// 短按key1.status = 1;// LOG("key1 short pressed.\n");}}else if(READ_KEY1_STATE == KEY_PRESSED && (key1.status == 1)){if(++key1.debounce > KEY_LONG_PRESSED){// 长按key1.status = 2;key1.debounce = 0;// LOG("key1 long pressed.\n");return KEY1_LONG_PRESSED;}}else if((READ_KEY1_STATE == KEY_RELEASED) && (key1.status > 0)){if(key1.status == 1){// 短按释放key1.status = 0;key1.debounce = 0;return KEY1_SHORT_PRESSED;}if(key1.status == 2){// 长按释放key1.status = 0;key1.debounce = 0;}}if(READ_KEY2_STATE == KEY_PRESSED && (key2.status == 0)){if(++key2.debounce > KEY_SHORT_PRESSED){// 短按key2.status = 1;}}else if(READ_KEY2_STATE == KEY_PRESSED && (key2.status == 1)){if(++key2.debounce > KEY_LONG_PRESSED){// 长按key2.status = 2;key2.debounce = 0;return KEY2_LONG_PRESSED;}}else if((READ_KEY2_STATE == KEY_RELEASED) && (key2.status > 0)){if(key2.status == 1){// 短按释放key2.status = 0;key2.debounce = 0;return KEY2_SHORT_PRESSED;}if(key2.status == 2){// 长按释放key2.status = 0;key2.debounce = 0;}}if(READ_KEY3_STATE == KEY_PRESSED && (key3.status == 0)){if(++key3.debounce > KEY_SHORT_PRESSED){// 短按key3.status = 1;}}else if(READ_KEY3_STATE == KEY_PRESSED && (key3.status == 1)){if(++key3.debounce > KEY_LONG_PRESSED){// 长按key3.status = 2;key3.debounce = 0;return KEY3_LONG_PRESSED;}}else if((READ_KEY3_STATE == KEY_RELEASED) && (key3.status > 0)){if(key3.status == 1){// 短按释放key3.status = 0;key3.debounce = 0;return KEY3_SHORT_PRESSED;}if(key3.status == 2){// 长按释放key3.status = 0;key3.debounce = 0;}}if(READ_KEY4_STATE == KEY_PRESSED && (key4.status == 0)){if(++key4.debounce > KEY_SHORT_PRESSED){// 短按key4.status = 1;}}else if(READ_KEY4_STATE == KEY_PRESSED && (key4.status == 1)){if(++key4.debounce > KEY_LONG_PRESSED){// 长按key4.status = 2;key4.debounce = 0;return KEY4_LONG_PRESSED;}}else if((READ_KEY4_STATE == KEY_RELEASED) && (key4.status > 0)){if(key4.status == 1){// 短按释放key4.status = 0;key4.debounce = 0;return KEY4_SHORT_PRESSED;}if(key4.status == 2){// 长按释放key4.status = 0;key4.debounce = 0;}}return -1;
}// 按键处理
void key_handle(void)
{static uint8_t key_state;uint8_t i;static uint8_t step = 0;key_state = key_scan();  // 按键扫描if(key_state == KEY1_SHORT_PRESSED){// 按键1短按LOG("key1 short pressed.\n");}else if(key_state == KEY1_LONG_PRESSED){// 按键1长按LOG("key1 long pressed.\n");}else if(key_state == KEY2_SHORT_PRESSED){// 按键2短按LOG("key2 short pressed.\n");}else if(key_state == KEY2_LONG_PRESSED){// 按键2长按LOG("key2 long pressed.\n");}else if(key_state == KEY3_SHORT_PRESSED){// 按键3短按LOG("key3 short pressed.\n");}else if(key_state == KEY3_LONG_PRESSED){// 按键3长按LOG("key3 long pressed.\n");}else if(key_state == KEY4_SHORT_PRESSED){// 按键4短按LOG("key4 short pressed.\n");}else if(key_state == KEY4_LONG_PRESSED){// 按键4长按LOG("key4 long pressed.\n");}
}/********************** 定时器配置,用于定时扫描按键 *************************/ 
void TIMER2_IRQHandler(void)
{if(SET == timer_interrupt_flag_get(TIMER2, TIMER_INT_UP)){/* clear channel 0 interrupt bit */timer_interrupt_flag_clear(TIMER2, TIMER_INT_UP);key_handle();  // 按键扫描并处理}
}void nvic_config(void)
{nvic_irq_enable(TIMER2_IRQn, 0, 0);
}void timer_config(void)
{/* ----------------------------------------------------------------------------TIMER2 Configuration: TIMER2CLK = SystemCoreClock/18000 = 10KHz, the period is 1s(10/10000 = 1s).---------------------------------------------------------------------------- */timer_parameter_struct timer_initpara;/* enable the peripherals clock */rcu_periph_clock_enable(RCU_TIMER2);/* deinit a TIMER */timer_deinit(TIMER2);/* initialize TIMER init parameter struct */timer_struct_para_init(&timer_initpara);/* TIMER2 configuration */timer_initpara.prescaler         = 18000 - 1;           // 180MHz / 18000 = 10kHztimer_initpara.alignedmode       = TIMER_COUNTER_EDGE;timer_initpara.counterdirection  = TIMER_COUNTER_UP;timer_initpara.period            = 10 - 1;             // 10 * 0.01ms = 1mstimer_initpara.clockdivision     = TIMER_CKDIV_DIV1;timer_init(TIMER2, &timer_initpara);/* enable the TIMER interrupt */timer_interrupt_enable(TIMER2, TIMER_INT_UP);/* enable a TIMER */timer_enable(TIMER2);
}void timer_user_init(void)
{/* configure the TIMER peripheral */timer_config();/* configure the TIMER2 interrupt */nvic_config();
}

key.h:

#ifndef __KEY_H
#define __KEY_H#include "gd32e50x.h"
#include "gd32e50x_gpio.h"#define KEY1_SHORT_PRESSED   0
#define KEY2_SHORT_PRESSED   1
#define KEY3_SHORT_PRESSED   2
#define KEY4_SHORT_PRESSED   3
#define KEY1_LONG_PRESSED    4
#define KEY2_LONG_PRESSED    5
#define KEY3_LONG_PRESSED    6
#define KEY4_LONG_PRESSED    7#define KEY_PRESSED          0      // 按下时电平为0
#define KEY_RELEASED         1      // 按下时电平为1
#define KEY_SHORT_PRESSED    30     // 1ms x 30 = 30ms
#define KEY_LONG_PRESSED     1000   // 1ms x 1000 = 1s#define KEY1_CLOCK       RCU_GPIOB
#define KEY1_PORT        GPIOB
#define KEY1_PIN         GPIO_PIN_12
#define KEY2_CLOCK       RCU_GPIOB
#define KEY2_PORT        GPIOB
#define KEY2_PIN         GPIO_PIN_13
#define KEY3_CLOCK       RCU_GPIOB
#define KEY3_PORT        GPIOB
#define KEY3_PIN         GPIO_PIN_14
#define KEY4_CLOCK       RCU_GPIOB
#define KEY4_PORT        GPIOB
#define KEY4_PIN         GPIO_PIN_15#define READ_KEY1_STATE  gpio_input_bit_get(KEY1_PORT, KEY1_PIN)
#define READ_KEY2_STATE  gpio_input_bit_get(KEY2_PORT, KEY2_PIN)
#define READ_KEY3_STATE  gpio_input_bit_get(KEY3_PORT, KEY3_PIN)
#define READ_KEY4_STATE  gpio_input_bit_get(KEY4_PORT, KEY4_PIN)typedef struct
{uint16_t debounce;uint8_t status;
} key_t;void key_user_init(void);
int key_scan(void);#endif

main.c:

#include "main.h"
#include "uart.h"
#include "key.h"int main(void)
{// systick_config();uart_user_init();key_user_init();printf("app init success.\n");while(1){}
}

mian.h:

#ifndef MAIN_H
#define MAIN_H#include "gd32e50x.h"
#include "gd32e50x_rcu.h"
#include "gd32e50x_gpio.h"
#include "systick.h"
#include "uart.h"#define UART_DEBUG#ifdef UART_DEBUG#define DEBUG(format, ...) printf(format, ##__VA_ARGS__)#define LOG  printf
#else#define DEBUG(format, ...)#define LOG(format, ...) 
#endif#endif /* MAIN_H */

3 测试log

在这里插入图片描述

4 其他实现方式

详见我之前的博客:以STM32为例,实现按键的短按和长按

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/434161.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

信息安全工程师(21)安全协议

前言 安全协议是建立在密码体制基础上的一种交互通信协议,它运用密码算法和协议逻辑来实现认证、密钥分配、数据机密性、完整性和抗否认性等安全目标。 一、定义与目的 安全协议旨在确保网络环境中信息交换的安全性,通过密码技术和协议逻辑来保护数据的机…

AIGC入门:Comfyui整合包,解压即用!

整合包获取方式放在文末了 今天给大家分享的Comfyui的整合包,无需复杂的操作,解压即可使用。 整合包已经打包好了,获取方式放在文末,需要的朋友可以自行领取哦。 什么是Comfyui ComfyUI采用节点式的操作方式,这种方…

240922-局域网内通过SSH与SFTP访问RHEL服务器

要通过SFTP(安全文件传输协议)在局域网内访问一台RHEL服务器,您需要确保以下步骤都已经正确完成: A. 在RHEL服务器上配置SFTP服务 RHEL默认通过sshd服务提供SFTP功能,SFTP使用SSH协议进行文件传输,因此需要…

DarkLabel2.4版本导入MOT17数据集

目录 背景导入效果MOT17数据集说明DarkLabel导入视频导入gt文件 背景 做目标追踪,目前找了一圈开源工具,发现DarkLabel还是很好用的,提供自动目标跟踪,标注很方便。 由于目标追踪我用的是bytetrack,官网是用mot17数据…

Qt开发技巧(十)新版随机数,模拟鼠标移动,QTextEdit卡死问题,函数返回值,参数结构化,选项卡控件,窗体属性

继续讲一些Qt开发中的技巧操作: 1.新版随机数 Qt中有自己的随机数取值方法,Qt5.10以前使用qsrand方法, Qt5.10以后提供了新的类 QRandomGenerator QRandomGenerator64 管理随机数,使用更方便,尤其是取某个区间的随机数…

AtCoder Regular Contest 156 C. Tree and LCS(思维题 构造 数学归纳法)

题目 构造一个排列p, 使得对于任意树上路径, 求该路径上的点(x1,...,xk)和对应排列上的点(Px1,...,Pxk)的最长公共子序列都得到一个值, 称为相似值 现在想令任意树上路径的相似值的最大可能长度最小, 最小化前提下&#xff0…

Unity 网格的细节级别 (LOD) 学习

Unity LOD学习 文档 网格的细节级别 (LOD) https://docs.unity.cn/cn/2020.3/Manual/LevelOfDetail.html在项目中使用 自动设置导入 文档: https://docs.unity.cn/cn/2020.3/Manual/importing-lod-meshes.html可以在外部 3D 应用程序中创建具有不同细节级别的网…

【机器学习(十)】时间序列案例之月销量预测分析—Holt-Winters算法—Sentosa_DSML社区版

文章目录 一、Holt-Winters算法原理(一) 加法模型(二) 乘法模型(三) 阻尼趋势 二、Holt Winters算法优缺点优点缺点 三、Python代码和Sentosa_DSML社区版算法实现对比(一) 数据读入和统计分析(二) 数据预处理(三) 模型训练和模型评估(四) 模型可视化 四、总结 一、Holt-Winters…

【bug fixed】hexo d的时候Spawn failed

在执行hexo d部署的时候,遇到报错: % hexo d INFO Validating config INFO Deploying: git INFO Clearing .deploy_git folder... INFO Copying files from public folder... INFO Copying files from extend dirs... [main 8e89088] Site updated…

VS开发C++项目常用基础属性配置

这篇文件简单讨论一下visual studio中项目属性的常用基础配置。 1.输出目录:项目目标文件生成位置。 2.中间目录:项目生成的中间文件所在的位置。 3.目标文件名:项目生成目标文件名称。 4.附加包含目录:三方库等头文件所在的位…

【Python】探索 Graphene:Python 中的 GraphQL 框架

人们常说挣多挣少都要开心,这话我相信,但是请问挣少了怎么开心? 随着现代 Web 应用对数据交互需求的不断增长,GraphQL 作为一种数据查询和操作语言,越来越受到开发者的青睐。Graphene 是 Python 语言中实现 GraphQL 的…

工业缺陷检测——Windows 10本地部署AnomalyGPT工业缺陷检测大模型

0. 引言 在缺陷检测中,由于真实世界样本中的缺陷数据极为稀少,有时在几千甚至几万个样品中才会出现一个缺陷数据。因此,以往的模型只需在正常样本上进行训练,学习正常样品的数据分布。在测试时,需要手动指定阈值来区分…

vite 底层解析

vite 目前大多数框架的前端构建工具都已经被vite取代,相信你已经使用过vite了。可是在使用过程中,vite对我来说一直是模糊的,现在就来一探究竟,为啥它更好? 接下来我将为从以下几点出发,究其原理 一、原生…

Redis篇(应用案例 - 商户查询缓存)

目录 一、什么是缓存? 二、为什么要使用缓存 三、如何使用缓存 四、添加商户缓存 1. 缓存模型和思路 2. 代码如下 五、缓存更新策略 1. 内存淘汰 2. 超时剔除 3. 主动更新 六、数据库缓存不一致解决方案 1. 数据库缓存不一致解决方案 2. 数据库和缓存不一致采用什…

excel统计分析(4): 多元线性回归分析

用途:研究多个自变量(也称为预测变量或解释变量)与一个因变量(也称为响应变量)之间的线性关系。 多元线性回归分析模型:Yβ0β1X1β2X2…βkXkϵ Y 是因变量。1,X2,…,Xk 是自变量。β0 是截距项。β1,β2,…

Colorful/七彩虹将星X15 AT 23 英特尔13代处理器 Win11原厂OEM系统 带COLORFUL一键还原

安装完毕自带原厂驱动和预装软件以及一键恢复功能,自动重建COLORFUL RECOVERY功能,恢复到新机开箱状态。 【格式】:iso 【系统类型】:Windows11 原厂系统下载网址:http://www.bioxt.cn 注意:安装系统会…

Vue中集中常见的布局方式

布局叠加 完整代码最外层的Container设置为relative&#xff0c;内部的几个box设置为absolute <template><div class"container"><div class"box box1">Box 1</div><div class"box box2">Box 2</div><d…

cobaltstrike之execute-assembly内存加载—后渗透利用

通过execute-assembly内存加载来执行文件&#xff0c;从而避免后渗透中被杀毒软件静态报毒&#xff0c;使更多的工具能够继续利用&#xff0c;常见的方式有权限维持&#xff0c;代理上线等操作 远程bin文件加载 首先尝试远程加载bin文件 使用项目https://github.com/shanekha…

时序预测|基于灰狼优化LightGBM的时间序列预测Matlab程序GWO-LightGBM 单变量和多变量 含基础模型

时序预测|基于灰狼优化LightGBM的时间序列预测Matlab程序GWO-LightGBM 单变量和多变量 含基础模型 文章目录 一、基本原理原理概述流程注意事项 二、实验结果三、核心代码四、代码获取五、总结 一、基本原理 时序预测中使用灰狼优化&#xff08;GWO&#xff09;结合LightGBM的…

828华为云征文|部署多功能集成的协作知识库 AFFiNE

828华为云征文&#xff5c;部署多功能集成的协作知识库 AFFiNE 一、Flexus云服务器X实例介绍二、Flexus云服务器X实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置2.4 Docker 环境搭建 三、Flexus云服务器X实例部署 AFFiNE3.1 AFFiNE 介绍3.2 AFFiNE 部署3.3 AFFiNE 使用 四、…