文章目录
- 前言
- 一、YOLOv11模型结构图
- 二、环境搭建
- 三、构建数据集
- 四、修改配置文件
- ①数据集文件配置
- ②模型文件配置
- ③训练文件配置
- 四、模型训练和测试
- 模型训练
- 模型验证
- 模型推理
- 总结
前言
提示:本文是YOLOv11训练自己数据集的记录教程,需要大家在本地已配置好CUDA,cuDNN等环境,没配置的小伙伴可以查看我的往期博客:在Windows10上配置CUDA环境教程
2024年9月30日,YOLOv11
是Ultralytics
最新发布的计算机视觉模型。支持多种任务,包括目标检测、实例分割、图像分类、姿态估计、有向目标检测以及物体跟踪等,本文主要讲述其检测任务的模型搭建训练流程。
代码地址:https://github.com/ultralytics/ultralytics
一、YOLOv11模型结构图
二、环境搭建
在配置好CUDA环境,并且获取到YOLOv11源码后,建议新建一个虚拟环境专门用于YOLOv11模型的训练。将YOLOv11加载到环境后,安装剩余的包。在运行测试过程中,依次安装缺少的包
pip install ...
三、构建数据集
YOLOv11模型的训练需要原图像及对应的YOLO格式标签,还未制作标签的可以参考我这篇文章:LabelImg安装与使用教程。
我的原始数据存放在根目录的data
文件夹(新建的)下,里面包含图像和标签。
标签内的格式如下:
具体格式为 class_id x y w h,分别代表物体类别,标记框中心点的横纵坐标(x, y),标记框宽高的大小(w, h),且都是归一化后的值,图片左上角为坐标原点。
将原本数据集按照8:1:1的比例划分成训练集、验证集和测试集三类,划分代码如下。
# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os# 原始路径
image_original_path = "data/images/"
label_original_path = "data/labels/"cur_path = os.getcwd()
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")train_percent = 0.8
val_percent = 0.1
test_percent = 0.1def del_file(path):for i in os.listdir(path):file_data = path + "\\" + ios.remove(file_data)def mkdir():if not os.path.exists(train_image_path):os.makedirs(train_image_path)else:del_file(train_image_path)if not os.path.exists(train_label_path):os.makedirs(train_label_path)else:del_file(train_label_path)if not os.path.exists(val_image_path):os.makedirs(val_image_path)else:del_file(val_image_path)if not os.path.exists(val_label_path):os.makedirs(val_label_path)else:del_file(val_label_path)if not os.path.exists(test_image_path):os.makedirs(test_image_path)else:del_file(test_image_path)if not os.path.exists(test_label_path):os.makedirs(test_label_path)else:del_file(test_label_path)def clearfile():if os.path.exists(list_train):os.remove(list_train)if os.path.exists(list_val):os.remove(list_val)if os.path.exists(list_test):os.remove(list_test)def main():mkdir()clearfile()file_train = open(list_train, 'w')file_val = open(list_val, 'w')file_test = open(list_test, 'w')total_txt = os.listdir(label_original_path)num_txt = len(total_txt)list_all_txt = range(num_txt)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# train从list_all_txt取出num_train个元素# 所以list_all_txt列表只剩下了这些元素val_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = image_original_path + name + '.jpg'srcLabel = label_original_path + name + ".txt"if i in train:dst_train_Image = train_image_path + name + '.jpg'dst_train_Label = train_label_path + name + '.txt'shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)file_train.write(dst_train_Image + '\n')elif i in val:dst_val_Image = val_image_path + name + '.jpg'dst_val_Label = val_label_path + name + '.txt'shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)file_val.write(dst_val_Image + '\n')else:dst_test_Image = test_image_path + name + '.jpg'dst_test_Label = test_label_path + name + '.txt'shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)file_test.write(dst_test_Image + '\n')file_train.close()file_val.close()file_test.close()if __name__ == "__main__":main()
划分完成后将会在datasets文件夹下生成划分好的文件,其中images为划分后的图像文件,里面包含用于train、val、test的图像,已经划分完成;labels文件夹中包含划分后的标签文件,已经划分完成,里面包含用于train、val、test的标签;train.tet、val.txt、test.txt中记录了各自的图像路径。
在训练过程中,也是主要使用这三个txt文件进行数据的索引。
四、修改配置文件
①数据集文件配置
数据集划分完成后,在根目录文件夹下新建data.yaml
文件。用于指明数据集路径和类别,我这边只有一个类别,只留了一个,多类别的在name内加上类别名即可。data.yaml
中的内容为:
path: ../datasets # 数据集所在路径
train: train.txt # 数据集路径下的train.txt
val: val.txt # 数据集路径下的val.txt
test: test.txt # 数据集路径下的test.txt# Classes
names:0: wave
②模型文件配置
在ultralytics/cfg/models/v11
文件夹下存放的是YOLOv11
的各个版本的模型配置文件,检测的类别是coco数据的80类。在训练自己数据集的时候,只需要将其中的类别数修改成自己的大小。在根目录文件夹下新建yolov11.yaml
文件,此处以ultralytics/cfg/models/v11文件夹中的yolov11.yaml文件中的模型为例,将其中的内容复制到根目录的yolov11.yaml文件中
,并将nc: 1 # number of classes 修改类别数` 修改成自己的类别数,如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
修改完成后,模型文件就配置好啦。
③训练文件配置
YOLOv11
的超参数配置在ultralytics/cfg
文件夹下的default.yaml
文件中
在模型训练中,比较重要的参数是model
、data
、epochs
、batch
、imgsz
、device
以及workers
。
-
model
表示训练的模型结构。 -
data
是配置数据集文件的路径,用于指定自己的数据集yaml文件。 -
epochs
指训练的轮次,默认是100次,只要模型能收敛即可。 -
batch
是表示一次性将多少张图片放在一起训练,越大训练的越快,如果设置的太大会报OOM错误,我这边在default
中设置16,表示一次训练16张图像。设置的大小为2的幂次,1为2的0次,16为2的4次。 -
imgsz
表示送入训练的图像大小,会统一进行缩放。要求是32的整数倍,尽量和图像本身大小一致。 -
device
指训练运行的设备。该参数指定了模型训练所使用的设备,例如使用 GPU 运行可以指定为device=0,或者使用多个 GPU 运行可以指定为 device=0,1,2,3,如果没有可用的 GPU,可以指定为 device=cpu 使用 CPU 进行训练。 -
workers
是指数据装载时cpu所使用的线程数,默认为8,过高时会报错:[WinError 1455] 页面文件太小,无法完成操作,此时就只能将workers调成0了。
模型训练的相关基本参数就是这些啦,其余的参数可以等到后期训练完成进行调参时再详细了解。
四、模型训练和测试
YOLOv11
在训练和测试过程中,具体的参数信息可在ultralytics/yolo/cfg/default.yaml
路径下找到。
模型训练
在根目录新建train.py
,输入以下代码:
from ultralytics import YOLOif __name__ == '__main__':model = YOLO(r'yolov11m.yaml')model.train(data=r'data.yaml',imgsz=640,epochs=100,single_cls=True, batch=16,workers=10,device='0',)
训练情况:
模型验证
在根目录新建val.py
,输入以下代码:
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('runs/train/exp/weights/best.pt')model.val(data='data.yaml',imgsz=640,batch=16,split='test',workers=10,device='0',)
在验证阶段,mode模式为验证,mode=val
,模型使用训练完成的权重文件:runs/train/exp/weights/best.pt
,best.pt
就是训练完成后的最佳权重。
验证结果:
模型推理
在根目录新建detect.py
,输入以下代码:
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('runs/train/exp/weights/best.pt')model.predict(source='images',imgsz=640,device='0',)
在推理阶段,mode模式为预测,mode= predict
,模型使用训练完成的权重文件:runs/train/exp/weights/best.pt
,source表示需要预测的图像文件路径,images中存放了准备预测的图像。
总结
以上就是YOLOv11训练自己数据集的全部过程啦,欢迎大家在评论区交流~