YOLOv11训练自己的数据集(从代码下载到实例测试)

文章目录

  • 前言
  • 一、YOLOv11模型结构图
  • 二、环境搭建
  • 三、构建数据集
  • 四、修改配置文件
    • ①数据集文件配置
    • ②模型文件配置
    • ③训练文件配置
  • 四、模型训练和测试
    • 模型训练
    • 模型验证
    • 模型推理
  • 总结


前言

提示:本文是YOLOv11训练自己数据集的记录教程,需要大家在本地已配置好CUDA,cuDNN等环境,没配置的小伙伴可以查看我的往期博客:在Windows10上配置CUDA环境教程

2024年9月30日,YOLOv11Ultralytics最新发布的计算机视觉模型。支持多种任务,包括目标检测、实例分割、图像分类、姿态估计、有向目标检测以及物体跟踪等,本文主要讲述其检测任务的模型搭建训练流程。

在这里插入图片描述

在这里插入图片描述

代码地址:https://github.com/ultralytics/ultralytics

在这里插入图片描述


一、YOLOv11模型结构图

二、环境搭建

在配置好CUDA环境,并且获取到YOLOv11源码后,建议新建一个虚拟环境专门用于YOLOv11模型的训练。将YOLOv11加载到环境后,安装剩余的包。在运行测试过程中,依次安装缺少的包

pip install ...

三、构建数据集

YOLOv11模型的训练需要原图像及对应的YOLO格式标签,还未制作标签的可以参考我这篇文章:LabelImg安装与使用教程。

我的原始数据存放在根目录的data文件夹(新建的)下,里面包含图像和标签。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
标签内的格式如下:
在这里插入图片描述
具体格式为 class_id x y w h,分别代表物体类别,标记框中心点的横纵坐标(x, y),标记框宽高的大小(w, h),且都是归一化后的值,图片左上角为坐标原点。

将原本数据集按照8:1:1的比例划分成训练集、验证集和测试集三类,划分代码如下。

# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os# 原始路径
image_original_path = "data/images/"
label_original_path = "data/labels/"cur_path = os.getcwd()
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")train_percent = 0.8
val_percent = 0.1
test_percent = 0.1def del_file(path):for i in os.listdir(path):file_data = path + "\\" + ios.remove(file_data)def mkdir():if not os.path.exists(train_image_path):os.makedirs(train_image_path)else:del_file(train_image_path)if not os.path.exists(train_label_path):os.makedirs(train_label_path)else:del_file(train_label_path)if not os.path.exists(val_image_path):os.makedirs(val_image_path)else:del_file(val_image_path)if not os.path.exists(val_label_path):os.makedirs(val_label_path)else:del_file(val_label_path)if not os.path.exists(test_image_path):os.makedirs(test_image_path)else:del_file(test_image_path)if not os.path.exists(test_label_path):os.makedirs(test_label_path)else:del_file(test_label_path)def clearfile():if os.path.exists(list_train):os.remove(list_train)if os.path.exists(list_val):os.remove(list_val)if os.path.exists(list_test):os.remove(list_test)def main():mkdir()clearfile()file_train = open(list_train, 'w')file_val = open(list_val, 'w')file_test = open(list_test, 'w')total_txt = os.listdir(label_original_path)num_txt = len(total_txt)list_all_txt = range(num_txt)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# train从list_all_txt取出num_train个元素# 所以list_all_txt列表只剩下了这些元素val_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = image_original_path + name + '.jpg'srcLabel = label_original_path + name + ".txt"if i in train:dst_train_Image = train_image_path + name + '.jpg'dst_train_Label = train_label_path + name + '.txt'shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)file_train.write(dst_train_Image + '\n')elif i in val:dst_val_Image = val_image_path + name + '.jpg'dst_val_Label = val_label_path + name + '.txt'shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)file_val.write(dst_val_Image + '\n')else:dst_test_Image = test_image_path + name + '.jpg'dst_test_Label = test_label_path + name + '.txt'shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)file_test.write(dst_test_Image + '\n')file_train.close()file_val.close()file_test.close()if __name__ == "__main__":main()

划分完成后将会在datasets文件夹下生成划分好的文件,其中images为划分后的图像文件,里面包含用于train、val、test的图像,已经划分完成;labels文件夹中包含划分后的标签文件,已经划分完成,里面包含用于train、val、test的标签;train.tet、val.txt、test.txt中记录了各自的图像路径。

在这里插入图片描述

在这里插入图片描述

在训练过程中,也是主要使用这三个txt文件进行数据的索引。

四、修改配置文件

①数据集文件配置

数据集划分完成后,在根目录文件夹下新建data.yaml文件。用于指明数据集路径和类别,我这边只有一个类别,只留了一个,多类别的在name内加上类别名即可。data.yaml中的内容为:

path: ../datasets  # 数据集所在路径
train: train.txt  # 数据集路径下的train.txt
val: val.txt  # 数据集路径下的val.txt
test: test.txt  # 数据集路径下的test.txt# Classes
names:0: wave

在这里插入图片描述

②模型文件配置

ultralytics/cfg/models/v11文件夹下存放的是YOLOv11的各个版本的模型配置文件,检测的类别是coco数据的80类。在训练自己数据集的时候,只需要将其中的类别数修改成自己的大小。在根目录文件夹下新建yolov11.yaml文件,此处以ultralytics/cfg/models/v11文件夹中的yolov11.yaml文件中的模型为例,将其中的内容复制到根目录的yolov11.yaml文件中 ,并将nc: 1 # number of classes 修改类别数` 修改成自己的类别数,如下:

在这里插入图片描述

在这里插入图片描述

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

修改完成后,模型文件就配置好啦。

③训练文件配置

YOLOv11的超参数配置在ultralytics/cfg文件夹下的default.yaml文件中

在这里插入图片描述

在模型训练中,比较重要的参数是modeldataepochsbatchimgszdevice以及workers

  • model表示训练的模型结构。

  • data是配置数据集文件的路径,用于指定自己的数据集yaml文件。

  • epochs指训练的轮次,默认是100次,只要模型能收敛即可。

  • batch是表示一次性将多少张图片放在一起训练,越大训练的越快,如果设置的太大会报OOM错误,我这边在default中设置16,表示一次训练16张图像。设置的大小为2的幂次,1为2的0次,16为2的4次。

  • imgsz表示送入训练的图像大小,会统一进行缩放。要求是32的整数倍,尽量和图像本身大小一致。

  • device指训练运行的设备。该参数指定了模型训练所使用的设备,例如使用 GPU 运行可以指定为device=0,或者使用多个 GPU 运行可以指定为 device=0,1,2,3,如果没有可用的 GPU,可以指定为 device=cpu 使用 CPU 进行训练。

  • workers是指数据装载时cpu所使用的线程数,默认为8,过高时会报错:[WinError 1455] 页面文件太小,无法完成操作,此时就只能将workers调成0了。

模型训练的相关基本参数就是这些啦,其余的参数可以等到后期训练完成进行调参时再详细了解。

四、模型训练和测试

YOLOv11在训练和测试过程中,具体的参数信息可在ultralytics/yolo/cfg/default.yaml路径下找到。

模型训练

在根目录新建train.py,输入以下代码:

from ultralytics import YOLOif __name__ == '__main__':model = YOLO(r'yolov11m.yaml')model.train(data=r'data.yaml',imgsz=640,epochs=100,single_cls=True,  batch=16,workers=10,device='0',)

训练情况:

在这里插入图片描述

在这里插入图片描述

模型验证

在根目录新建val.py,输入以下代码:

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('runs/train/exp/weights/best.pt')model.val(data='data.yaml',imgsz=640,batch=16,split='test',workers=10,device='0',)

在验证阶段,mode模式为验证,mode=val,模型使用训练完成的权重文件:runs/train/exp/weights/best.ptbest.pt就是训练完成后的最佳权重。

验证结果:

在这里插入图片描述

模型推理

在根目录新建detect.py,输入以下代码:

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('runs/train/exp/weights/best.pt')model.predict(source='images',imgsz=640,device='0',)

在推理阶段,mode模式为预测,mode= predict,模型使用训练完成的权重文件:runs/train/exp/weights/best.ptsource表示需要预测的图像文件路径,images中存放了准备预测的图像


总结

以上就是YOLOv11训练自己数据集的全部过程啦,欢迎大家在评论区交流~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/435645.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

心觉:如何重塑高效学习的潜意识(5)终结篇

Hi,我是心觉,与你一起玩转潜意识、脑波音乐和吸引力法则,轻松掌控自己的人生! 挑战每日一省写作184/1000天 上篇文章讲了如何发挥边学边用的威力及其底层逻辑 到此为止,我们已经系统地把“系统化学习”和“边学边用…

【教程】57帧! Mac电脑流畅运行黑神话悟空

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 1、先安装CrossOver。网上有许多和谐版,可自行搜索。(pd虚拟机里运行黑神话估计够呛的) 2、运行CrossOver&#xf…

常州威雅学校:欢迎探访校园,共赴全人教育之旅!

自2012年创校起,我们践行着“每一个孩子都卓越”的全人教育理念,见证了常州威雅发展至今天的方兴未艾。在岁月不居,时节如流间,我们用点点滴滴的耕耘,为学生的成长穿针引线,也在学校建设中精益求精。 一百次…

理解 Vue 的 setup 应用程序钩子

title: 理解 Vue 的 setup 应用程序钩子 date: 2024/9/30 updated: 2024/9/30 author: cmdragon excerpt: 摘要:本文详细介绍了Vue 3中setup函数的应用,包括其概念、特性、使用方法及重要性。setup函数作为组合API的核心,在组件实例化前被调用,用于设置响应式状态、计算…

解决 Failed to connect to 127.0.0.1 port XXXX: Connection refused问题

查看自己的代理,如果有设置,取消即可。注意https还是http,或者都取消算了 git config --global http.proxy git config --global --unset http.proxygit config --global https.proxy git config --global --unset https.proxy注意如果有人在…

APISIX 联动雷池 WAF 实现 Web 安全防护

Apache APISIX 是一个动态、实时、高性能的云原生 API 网关,提供了负载均衡、动态上游、灰度发布、服务熔断、身份认证、可观测性等丰富的流量管理功能。 雷池是由长亭科技开发的 WAF 系统,提供对 HTTP 请求的安全请求,提供完整的 API 管理和…

纯软件小白 学习DDR5

问题 1.你知道当你打开游戏加载存档时候计算机是在做什么吗? 由于你的CPU只有在数据被加载到DRAM的时候才可以工作,所以当你需要用数据的时候,数据会从SSD复制到DRAM这一过程需要时间,所以会有加载(所有3D模型、纹理…

Tensorflow2.0

Tensorflow2.0 有深度学习基础的建议直接看class3 class1 介绍 人工智能3学派 行为主义:基于控制论,构建感知-动作控制系统。(控制论,如平衡、行走、避障等自适应控制系统) 符号主义:基于算数逻辑表达式,求解问题时先把问题描述为表达式…

完成UI界面的绘制

绘制UI 接上文,在Order90Canvas下创建Image子物体,图片资源ui_fish_lv1,设置锚点(CountdownPanelImg同理),命名为LvPanelImg,创建Text子物体,边框宽高各50, ,重名为LvT…

【2025】基于Spring Boot的智慧农业小程序(源码+文档+调试+答疑)

文章目录 一、***-项目介绍二、***-开发环境三、***-系统展示四、***-代码展示五、***-项目文档展示六、***-项目总结 大家可以帮忙点赞、收藏、关注、评论啦 👇🏻 一、***-项目介绍 当今社会已经步入了科学技术进步和经济社会快速发展的新时期&#x…

如何使用 Python 读取数据量庞大的 excel 文件

使用 pandas.read_excel 读取大文件时,的确会遇到性能瓶颈,特别是对于10万行20列这种规模的 .xlsx 文件,常规的 pandas 方法可能会比较慢。 要提高读取速度,关键是找到更高效的方式处理 Excel 文件,特别是在 Python 的…

Docker安装consul + go使用consul + consul知识

1. 什么是服务注册和发现 假如这个产品已经在线上运行,有一天运营想搞一场促销活动,那么我们相对应的【用户服务】可能就要新开启三个微服务实例来支撑这场促销活动。而与此同时,作为苦逼程序员的你就只有手动去 API gateway 中添加新增的这…

MongoDB的安装与增删改查基本操作

MongoDB是一种非关系型数据库,是NoSQL语言,但是又是最接近关系型数据库的。内部存储不是表结构,但是可以对数据进行表结构的操作。 一、安装 在官网:Download MongoDB Community Server | MongoDB下载系统对应的版本进行安装即可…

掌握CMD命令:轻松切换IP地址

在日常的网络管理与维护中,切换IP地址是一项常见且重要的操作。无论是为了测试网络配置、访问特定资源,还是解决IP冲突问题,掌握如何在命令行界面(CMD)中切换IP地址都是每个网络管理员或高级用户的必备技能。本文将详细…

asp.net mvc core 路由约束,数据标记DataTokens

》从0自己搭建MVC 》用 asp.net Core web 应用 空web 应用程序 需要配置 mvc服务 、mvc路由 新建 Controller 、Models、Views 》》》core 6 之前版本 vs2022 asp.net Core Web 应用(模型-视图-控制器) 不需要配置 就是mvc框架 asp.net Core web 应…

怎么查看网站是否被谷歌收录,查看网站是否被搜索引擎收录5个方法与步骤

要查看网站是否被谷歌(Google)或其他搜索引擎收录,是网站管理和SEO(搜索引擎优化)中的一个重要环节。以下是查看网站是否被搜索引擎收录5个方法与步骤,帮助您确认网站是否被搜索引擎成功索引: …

丹摩智算(damodel)部署stable diffusion实验

名词解释: 丹摩智算(damodel):是一款带有RTX4090,Tesla-P40等显卡的公有云服务器。 stable diffusion:是一个大模型,可支持文生图,图生图,文生视频等功能 一.实验目标 …

八LAMP搭建

# LAMP ## 一、知识回顾 ### FTP samba nfs 特点 - 借用Linux用户作为映射用户,进行权限管理 - 软件本身还有管理控制权限 #### 客户端连接到服务器后进行读写执行等操作 ,必须同时具有: - 软件许可的权限 vsftpd: anon upload enableYES - 文件…

零工市场小程序如何提高找兼职的效率?

越来越多的人们会选择成为自由职业者,或者在空暇时兼职来获取酬劳,那么传统的找兼职方式,如:中介公司、招聘广告等。 如今大家的生活都已经进入了“快节奏”,零工市场小程序针对这样的问题而提出了解决方案&#xff0…

侧边菜单的展开和折叠

环境准备&#xff1a;Vue3Element-UI Plus <script setup> import {ref} from "vue";// 是否折叠菜单&#xff0c;默认折叠 const isCollapse ref(true)// 退出登录 function logout() {alert(退出) }// 个人中心 function profile() {alert(个人中心) } <…