MATLAB案例 | Copula的密度函数和分布函数图

本文介绍各种类型(Gaussian、t、Gumbel、Clayton、Frank)Copula的密度函数和分布函数图的绘制

完整代码

clc
close all
clear%% ********************计算Copula的密度函数和分布函数图************************
[Udata,Vdata] = meshgrid(linspace(0,1,31));  % 为绘图需要,产生新的网格数据
% 调用copulapdf函数计算网格点上的二元正态Copula密度函数值
Cpdf_norm = copulapdf('Gaussian',[Udata(:), Vdata(:)],0.7);
% 调用copulacdf函数计算网格点上的二元正态Copula分布函数值
Ccdf_norm = copulacdf('Gaussian',[Udata(:), Vdata(:)],0.7);% 调用copulapdf函数计算网格点上的二元t-Copula密度函数值
Cpdf_t = copulapdf('t',[Udata(:), Vdata(:)],0.7,5);
% 调用copulacdf函数计算网格点上的二元t-Copula分布函数值
Ccdf_t = copulacdf('t',[Udata(:), Vdata(:)],0.7,5);% 调用copulapdf函数计算网格点上的二元Gumbel-Copula密度函数值
Cpdf_Gumbel = copulapdf('Gumbel',[Udata(:), Vdata(:)],1.5);
% 调用copulacdf函数计算网格点上的二元Gumbel-Copula分布函数值
Ccdf_Gumbel = copulacdf('Gumbel',[Udata(:), Vdata(:)],1.5);% 调用copulapdf函数计算网格点上的二元Clayton-Copula密度函数值
Cpdf_Clayton = copulapdf('Clayton',[Udata(:), Vdata(:)],1);
% 调用copulacdf函数计算网格点上的二元Clayton-Copula分布函数值
Ccdf_Clayton = copulacdf('Clayton',[Udata(:), Vdata(:)],1);% 调用copulapdf函数计算网格点上的二元Frank-Copula密度函数值
Cpdf_Frank = copulapdf('Frank',[Udata(:), Vdata(:)],2);
% 调用copulacdf函数计算网格点上的二元Gumbel-Copula分布函数值
Ccdf_Frank = copulacdf('Frank',[Udata(:), Vdata(:)],2);%% 绘制二元正态Copula的密度函数和分布函数图
% 绘制二元Gaussian-Copula的密度函数和分布函数图
figure(1);  % 新建图形窗口
subplot(1,2,1)
surf(Udata,Vdata,reshape(Cpdf_norm,size(Udata)));  % 绘制二元正态Copula密度函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('c(u,v)');  % 为z轴加标签
title('二元正态Copula的密度函数')
subplot(1,2,2)
surf(Udata,Vdata,reshape(Ccdf_norm,size(Udata)));  % 绘制二元正态Copula分布函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('C(u,v)');  % 为z轴加标签
title('二元正态Copula的分布函数')% 绘制二元t-Copula的密度函数和分布函数图
figure(2);  % 新建图形窗口
subplot(1,2,1)
surf(Udata,Vdata,reshape(Cpdf_t,size(Udata)));  % 绘制二元t-Copula密度函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('c(u,v)');  % 为z轴加标签
title('二元t-Copula的密度函数')
subplot(1,2,2)
surf(Udata,Vdata,reshape(Ccdf_t,size(Udata)));  % 绘制二元t-Copula分布函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('C(u,v)');  % 为z轴加标签
title('二元t-Copula的分布函数')% 绘制二元Gumbel-Copula的密度函数和分布函数图
figure(3);  % 新建图形窗口
subplot(1,2,1)
surf(Udata,Vdata,reshape(Cpdf_Gumbel,size(Udata)));  % 绘制二元t-Copula密度函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('c(u,v)');  % 为z轴加标签
title('二元Gumbel-Copula的密度函数')
subplot(1,2,2)
surf(Udata,Vdata,reshape(Ccdf_Gumbel,size(Udata)));  % 绘制二元t-Copula分布函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('C(u,v)');  % 为z轴加标签
title('二元Gumbel-Copula的分布函数')% 绘制二元Gumbel-Copula的密度函数和分布函数图
figure(4);  % 新建图形窗口
subplot(1,2,1)
surf(Udata,Vdata,reshape(Cpdf_Clayton,size(Udata)));  % 绘制二元t-Copula密度函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('c(u,v)');  % 为z轴加标签
title('二元Clayton-Copula的密度函数')
subplot(1,2,2)
surf(Udata,Vdata,reshape(Ccdf_Clayton,size(Udata)));  % 绘制二元t-Copula分布函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('C(u,v)');  % 为z轴加标签
title('二元Clayton-Copula的分布函数')% 绘制二元Gumbel-Copula的密度函数和分布函数图
figure(5);  % 新建图形窗口
subplot(1,2,1)
surf(Udata,Vdata,reshape(Cpdf_Frank,size(Udata)));  % 绘制二元t-Copula密度函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('c(u,v)');  % 为z轴加标签
title('二元Frank-Copula的密度函数')
subplot(1,2,2)
surf(Udata,Vdata,reshape(Ccdf_Frank,size(Udata)));  % 绘制二元t-Copula分布函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('C(u,v)');  % 为z轴加标签
title('二元Frank-Copula的分布函数')

绘制结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/436391.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

armbian安装docker

最近又搞了台瑞莎Radxa 3E ,从零开始部署unbuntu环境,发现是真曲折啊,虽然有点前车之鉴了 在Armbian上安装Docker,可以按照以下步骤操作: 1、更新软件包列表: sudo apt-get update 2、安装必要的软件包…

Web和UE5像素流送、通信教程

一、web端配置 首先打开Github地址:https://github.com/EpicGamesExt/PixelStreamingInfrastructure 找到自己虚幻引擎对应版本的项目并下载下来,我这里用的是5.3。 打开项目找到PixelStreamingInfrastructure-master > Frontend > implementat…

算法训练营打卡Day19

目录 1.二叉搜索树的最近公共祖先 2.二叉树中的插入操作 3.删除二叉搜索树中的节点 题目1、二叉搜索树的最近公共祖先 力扣题目链接(opens new window) 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有…

【数据结构与算法】算法和算法分析

文章目录 一.算法1.定义2.描述 二.算法与程序三.算法特性四.算法效率的度量4.1算法时间事前分析法算法时间复杂度的渐进表示法分析算法时间复杂度的基本方法 4.2算法空间 数据的逻辑结构映像到内存就是数据的存储结构,针对数据的逻辑结构可以选择多种存储结构。数据…

python --qt5(webview)/防多开/套壳网页/多次点击激活旧窗口

pyqtwebengine5.12 PyQt55.12class MyWindow(QMainWindow):def __init__(self):super(MyWindow, self).__init__()self.browser QWebEngineView(self) # 如果不写self则新生成一个窗口self.browser.setWindowTitle(技术领域占比分析)self.browser.setWindowIcon(QIcon(LOGO_P…

C0007.Clion中添加ui文件及运行的完整步骤

1.创建ui文件 选择Ui文件目录,右击,打开Qt Designer; 创建完成后,保存ui界面,并且命名为test.ui; 2.新建头文件test.h 在include目录中,新建头文件,文件名为test.h 3.新建test.cpp源文件

基于SpringBoot的休闲娱乐代理售票系统设计与实现

1.1研究背景 21世纪,我国早在上世纪就已普及互联网信息,互联网对人们生活中带来了无限的便利。像大部分的企事业单位都有自己的系统,由从今传统的管理模式向互联网发展,如今开发自己的系统是理所当然的。那么开发休闲娱乐代理售票…

Leetcode面试经典150题-322.零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。 计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。 你可以认为每种硬币的数量是无限的。 示…

Java项目实战II基于Java+Spring Boot+MySQL的大创管理系统(源码+数据库+文档)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者 一、前言 在当前创新创业氛围浓厚的背景下,大学生创新创业项目(简称“大创”&#xff0…

【MySQL】-- 数据库基础

文章目录 1. 数据库简介1.1 什么是数据库1.2 什么是关系型数据库 2. 客户端与服务器的通讯方式2.1 CS架构 3. MySQL架构 1. 数据库简介 1.1 什么是数据库 什么是数据库? 组织和保存数据的应用程序。数据库和之前学的数据结构有什么关系? 数据结构是组织数…

第168天:应急响应-ELK 日志分析系统Yara规则样本识别特征提取规则编写

目录 案例一:ELK 搭建使用-导入文件&监控日志&语法筛选 案例二:Yara 规则使用-规则检测&分析特征&自写规则 案例一:ELK 搭建使用-导入文件&监控日志&语法筛选 该软件是专业分析日志的工具,但是不支持安…

Java应用程序的服务器有哪些?

1.Tomcat、Jetty 和 JBoss 区别? Apache Tomcat、Jetty 和 JBoss都是用于部署Java应用程序的服务器,它们都支持Servlet、JSP和其他Java EE(现在称为Jakarta EE)技术。尽管它们有一些相似的功能,但它们之间还是存在一些…

快速了解:MySQL InnoDB和MyISAM的区别

目录 一、序言二、InnoDB和MyISAM对比1、InnoDB特性支持如下2、MyISAM特性支持如下 三、两者核心区别1、事务支持2、锁机制3、索引结构4、缓存机制5、故障恢复6、使用场景 一、序言 在MySQL 8.0中,InnoDB是默认的存储引擎。除了InnoDB,MySQL还支持其它的…

小程序原生-利用setData()对不同类型的数据进行增删改

1. 声明和绑定数据 wxml文件 <view> {{school}} </view> <view>{{obj.name}}</view> <view id"{{id}}" > 绑定属性值 </view> <checkbox checked"{{isChecked}}"/> <!--算数运算--> <view>{{ id …

Python 课程20-Scikit-learn

前言 Scikit-learn 是 Python 中最流行的机器学习库之一&#xff0c;它提供了多种用于监督学习和无监督学习的算法。Scikit-learn 的特点是简单易用、模块化且具有高效的性能。无论是初学者还是专业开发者&#xff0c;都可以借助它进行快速原型设计和模型开发。 在本教程中&a…

栈与队列相关知识(二)

目录 Java中栈&#xff08;Stack&#xff09; 一. 常用方法 1.push(E item) 2.pop() 3.peek() 4.empty() 二. 常用方法扩展 1. search(Object o) 2. clone() 3. contains(Object o) 4. size() 5. toArray() Java中队列&#xff08;Queue&#xff09; 一.常用方法&…

android compose ScrollableTabRow indicator 指示器设置宽度

.requiredWidth(30.dp) Box(modifier Modifier.background(Color.LightGray).fillMaxWidth()) {ScrollableTabRow(selectedTabIndex selectedTabIndex, // 默认选中第一个标签containerColor ColorPageBg,edgePadding 1.dp, // 内容与边缘的距离indicator { tabPositions…

《OpenCV 计算机视觉》—— 图像拼接

还未写完&#xff01;&#xff01;&#xff01; 下面是两张需要拼接的图片 完整代码&#xff1a; import cv2 import numpy as np import sysdef cv_show(name, img):cv2.imshow(name, img)cv2.waitKey(0)def detectAndDescribe(image):gray cv2.cvtColor(image, cv2.COLOR_…

C#测试调用Ghostscript.NET浏览PDF文件

Ghostscript.NET是针对Ghostscript的C#封装库&#xff0c;支持解析PostScript语言、操作PDF文件等。使用Ghostscript.NET的GhostscriptViewer 模块可以以图片形式查看PDF文档。本文学习并测试调用Ghostscript.NET模块打开及浏览PDF文件的基本用法。   Ghostscript.NET目前主要…

线性模型到神经网络

&#x1f680; 在初始神经网络那一节&#xff08;链接如下&#xff1a;初始神经网络&#xff09;的最后&#xff0c;我们通过加大考虑的天数使得我们最后得到的模型Loss最终停留在了0.32k&#xff0c;当我们在想让模型更加准确的时候&#xff0c;是做不到的&#xff0c;因为我们…