python画图|自制渐变柱状图

在前述学习过程中,我们已经通过官网学习了如何绘制渐变的柱状图及其背景。

掌握一门技能的最佳检验方式就是通过实战,因此,本文尝试做一些渐变设计。

前述学习记录可查看链接:

Python画图|渐变背景-CSDN博客

 【1】柱状图渐变

在上一篇文章中,由于代码太长,对单个函数的解读不够详细,在本文中可以详细展开。

首先将背景渐变的代码改为注释,原因为:

【a】所有渐变都使用了gradient_image()函数;

【b】gradient_bar()函数通过调用gradient_image()函数画出了渐变的柱状图;

【c】调用gradient_image()函数单独定义了背景渐变。

因此,在不对代码进行修改的前提下,最快速的更改就是把背景渐变的代码消除:

# background image
#gradient_image(ax, direction=1, extent=(0, 1, 0, 1), transform=ax.transAxes,#cmap=plt.cm.RdYlGn, cmap_range=(0.2, 0.9), alpha=0.5) #调用了子函数

此时的输出结果为:

图1

由图1可见,坐标轴区域内部已经改为纯色,仅柱状图变成渐变颜色。

然后尝试修改颜色,将柱状图的渐变色改为cmap由plt.cm.Blues_r改为plt.cm.Blues,此时的输出结果为:

图2

对比图1和图2可见,渐变的方向进行了交换。

【2】渐变代码解读

经过追溯, gradient_bar()函数和gradient_image()函数的构造和使用基本上都参考了ax.imshow()函数。

【2.1】ax.imshow()函数

因,在实施渐变以前,有必要先学习ax.imshow()函数:

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html#matplotlib.axes.Axes.imshow

Axes.imshow(X, cmap=None, norm=None, *, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, interpolation_stage=None, filternorm=True, filterrad=4.0, resample=None, url=None, data=None, **kwargs)

ax.imshow()包含参数意义如下:

X:画图数据依据

cmap:颜色参数

norm:标准化工具,将cmap数据缩放到(0,1)范围

aspect:设定坐标轴的长宽比

interpolation:插值设置

alpha:透明度设置

origin:设定数组的起点在左下角还是左上角

extent:边界框

interpolation_stage:插值范围

filternorm:图像粒度调整

filterrad=与差值先关

其余如resample、url、data=None和**kwargs不常用,暂无需关注。

【2.2】gradient_bar()函数

基于此,我们尝试解读下述代码:

def gradient_bar(ax, x, y, width=0.5, bottom=0): #自定义函数for left, top in zip(x, y):right = left + width #右边等于左边加宽度,这是要逐个排列的意思gradient_image(ax, extent=(left, right, bottom, top),cmap=plt.cm.Blues##, cmap_range=(0.2, 0.9)

第一行:

def gradient_bar(ax, x, y, width=0.5, bottom=0): #自定义函数

其中的ax,x,y均为外部输入变量, width=0.5, bottom=0为内部已经完成定义的变量。

for函数对x和y组成的组合数组进行取值。

right是内部变量,left+width代表着柱状图不断右移。

gradient_image()函数在此处被直接调用,调用的时候只需要外部输入ax,其余参数如extent、cmap和cmap_range都已经提前完成了赋值。

【2.3】gradient_image()函数

基于前述分析,我们尝试解读下述代码:

# background image
gradient_image(ax, direction=1, extent=(0, 1, 0, 1), transform=ax.transAxes,cmap=plt.cm.RdYlGn, cmap_range=(0.2, 0.9), alpha=0.5) #调用了子函数

这里是对gradient_image()函数的直接调用,几乎所有参数都已经解读过,稍有变化的是里面多了一个transform参数,这里的transform=ax.transAxes就是把ax值转化为Axes值 ,顺直坐标轴画直方图的意思。

【3】渐变调控

根据前述分析已经知晓,柱状图渐变和背景渐变可以分别设置,因此,此处尝试消除柱状图渐变,然后恢复背景渐变。

【3.1】柱状图渐变

消除柱状图渐变,最快的方式是将cmap_range的赋值改成一致的即可:

def gradient_bar(ax, x, y, width=0.5, bottom=0): #自定义函数for left, top in zip(x, y):right = left + width #右边等于左边加宽度,这是要逐个排列的意思gradient_image(ax, extent=(left, right, bottom, top),cmap=plt.cm.Blues, cmap_range=(0.8, 0.8))

此时的输出图像为:

图3

【3.2】背景渐变

消除背景图渐变,最快的方式也是将cmap_range的赋值改成一致的即可:

# background image
gradient_image(ax, direction=1, extent=(0,1,0, 1), transform=ax.transAxes,cmap=plt.cm.RdYlGn, cmap_range=(0.9, 0.9), alpha=0.5) #调用了子函数

 此时的输出图像为:

图4

至此,所有渐变已经消除。

至此的完整代码为:

import matplotlib.pyplot as plt  # 引入matplotlib模块画图
import numpy as np  # 引入numpy模块做数学计算np.random.seed(19680801) #定义随机数种子def gradient_image(ax, direction=0.3, cmap_range=(0, 1), **kwargs): #自定义函数"""Draw a gradient image based on a colormap.Parameters----------ax : AxesThe Axes to draw on.direction : floatThe direction of the gradient. This is a number inrange 0 (=vertical) to 1 (=horizontal).cmap_range : float, floatThe fraction (cmin, cmax) of the colormap that should beused for the gradient, where the complete colormap is (0, 1).**kwargsOther parameters are passed on to `.Axes.imshow()`.In particular, *cmap*, *extent*, and *transform* may be useful."""phi = direction * np.pi / 2 #定义因变量,从np.pi可以看出这是一个角度变量v = np.array([np.cos(phi), np.sin(phi)]) #定义数组,包括正弦值和余弦值X = np.array([[v @ [1, 0], v @ [1, 1]],[v @ [0, 0], v @ [0, 1]]]) #这里的@是矩阵乘法a, b = cmap_range #定义变量a和bX = a + (b - a) / X.max() * X #定义变量Xim = ax.imshow(X, interpolation='bicubic', clim=(0, 1),aspect='auto', **kwargs) #定义变量imreturn im #返回imdef gradient_bar(ax, x, y, width=0.5, bottom=0): #自定义函数for left, top in zip(x, y):right = left + width #右边等于左边加宽度,这是要逐个排列的意思gradient_image(ax, extent=(left, right, bottom, top),cmap=plt.cm.Blues, cmap_range=(0.8, 0.8))fig, ax = plt.subplots()
ax.set(xlim=(0, 10), ylim=(0, 1))# background image
gradient_image(ax, direction=1, extent=(0,1,0, 1), transform=ax.transAxes,cmap=plt.cm.RdYlGn, cmap_range=(0.9, 0.9), alpha=0.5) #调用了子函数N = 10 #定义常量10
x = np.arange(N) + 0.15 #使用随机变量参与运算制造变量x
y = np.random.rand(N) #定义随机矩阵
gradient_bar(ax, x, y, width=0.7) #画随机柱状图
plt.show() #输出图形

【4】坐标轴外背景颜色设置

在前述学习过程中,已经讨论了坐标轴以外的颜色设置,详见下述链接:

python画图|图像背景颜色设置-CSDN博客

此处的渐变仅仅涉及坐标轴内部区域和柱状图本身,基于此,尝试设置坐标轴外部的颜色,修改画图代码为:

fig, ax = plt.subplots(facecolor=(0.6, 0.5,0.9))

此时的输出结果为:

图5

由图5可见,外部背景、坐标轴内都有了颜色。

此时的完整代码为:

import matplotlib.pyplot as plt  # 引入matplotlib模块画图
import numpy as np  # 引入numpy模块做数学计算np.random.seed(19680801) #定义随机数种子def gradient_image(ax, direction=0.3, cmap_range=(0, 1), **kwargs): #自定义函数"""Draw a gradient image based on a colormap.Parameters----------ax : AxesThe Axes to draw on.direction : floatThe direction of the gradient. This is a number inrange 0 (=vertical) to 1 (=horizontal).cmap_range : float, floatThe fraction (cmin, cmax) of the colormap that should beused for the gradient, where the complete colormap is (0, 1).**kwargsOther parameters are passed on to `.Axes.imshow()`.In particular, *cmap*, *extent*, and *transform* may be useful."""phi = direction * np.pi / 2 #定义因变量,从np.pi可以看出这是一个角度变量v = np.array([np.cos(phi), np.sin(phi)]) #定义数组,包括正弦值和余弦值X = np.array([[v @ [1, 0], v @ [1, 1]],[v @ [0, 0], v @ [0, 1]]]) #这里的@是矩阵乘法a, b = cmap_range #定义变量a和bX = a + (b - a) / X.max() * X #定义变量Xim = ax.imshow(X, interpolation='bicubic', clim=(0, 1),aspect='auto', **kwargs) #定义变量imreturn im #返回imdef gradient_bar(ax, x, y, width=0.5, bottom=0): #自定义函数for left, top in zip(x, y):right = left + width #右边等于左边加宽度,这是要逐个排列的意思gradient_image(ax, extent=(left, right, bottom, top),cmap=plt.cm.Blues, cmap_range=(0.8, 0.8))fig, ax = plt.subplots(facecolor=(0.6, 0.5,0.9)) #设置坐标轴外区域颜色
ax.set(xlim=(0, 10), ylim=(0, 1))# background image
gradient_image(ax, direction=1, extent=(0,1,0, 1), transform=ax.transAxes,cmap=plt.cm.RdYlGn, cmap_range=(0.9, 0.9), alpha=0.5) #调用了子函数N = 10 #定义常量10
x = np.arange(N) + 0.15 #使用随机变量参与运算制造变量x
y = np.random.rand(N) #定义随机矩阵
gradient_bar(ax, x, y, width=0.7) #画随机柱状图
plt.show() #输出图形

【5】自主渐变设置

在前述学习的基础上,给所有区域山上色,并对坐标轴内部区域进行渐变设置,并设置图名为“Gradient Color”。

完整代码为:

import matplotlib.pyplot as plt  # 引入matplotlib模块画图
import numpy as np  # 引入numpy模块做数学计算np.random.seed(19680801) #定义随机数种子def gradient_image(ax, direction=0.3, cmap_range=(0, 1), **kwargs): #自定义函数"""Draw a gradient image based on a colormap.Parameters----------ax : AxesThe Axes to draw on.direction : floatThe direction of the gradient. This is a number inrange 0 (=vertical) to 1 (=horizontal).cmap_range : float, floatThe fraction (cmin, cmax) of the colormap that should beused for the gradient, where the complete colormap is (0, 1).**kwargsOther parameters are passed on to `.Axes.imshow()`.In particular, *cmap*, *extent*, and *transform* may be useful."""phi = direction * np.pi / 2 #定义因变量,从np.pi可以看出这是一个角度变量v = np.array([np.cos(phi), np.sin(phi)]) #定义数组,包括正弦值和余弦值X = np.array([[v @ [1, 0], v @ [1, 1]],[v @ [0, 0], v @ [0, 1]]]) #这里的@是矩阵乘法a, b = cmap_range #定义变量a和bX = a + (b - a) / X.max() * X #定义变量Xim = ax.imshow(X, interpolation='bicubic', clim=(0, 1),aspect='auto', **kwargs) #定义变量imreturn im #返回imdef gradient_bar(ax, x, y, width=0.5, bottom=0): #自定义函数for left, top in zip(x, y):right = left + width #右边等于左边加宽度,这是要逐个排列的意思gradient_image(ax, extent=(left, right, bottom, top),cmap=plt.cm.Blues, cmap_range=(0.2, 0.8))fig, ax = plt.subplots(facecolor=(0.6, 0.5,0.9)) #设置坐标轴外区域颜色
ax.set(xlim=(0, 10), ylim=(0, 1))# background image
gradient_image(ax, direction=1, extent=(0,1,0, 1), transform=ax.transAxes,cmap=plt.cm.RdYlGn, cmap_range=(0.1, 0.9), alpha=0.5) #调用了子函数N = 10 #定义常量10
x = np.arange(N) + 0.15 #使用随机变量参与运算制造变量x
y = np.random.rand(N) #定义随机矩阵
gradient_bar(ax, x, y, width=0.7) #画随机柱状图
ax.set_title('Gradient Color') #设置图名
plt.show() #输出图形

输出图形为:

图6

由图6可见,坐标轴内部的柱状图和背景颜色均渐变,坐标轴外的区域则是纯色。

【6】总结

学习了柱状图、坐标轴区域内部背景颜色的渐变设计,以及为坐标轴外部区域增添颜色。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/436627.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mac制作Linux操作系统启动盘

前期准备 一个 Mac 电脑 一个 U 盘(8GB 以上) 下载好 Linux 系统镜像(iso 文件) 具体步骤 挂载 U 盘 解挂 U 盘 写系统镜像到 U 盘 完成 一、挂载 U 盘 首先插入 U 盘,打开终端输入下面的命令查看 U 盘是否已经 m…

Springboot3 + MyBatis-Plus + MySql + Vue + ProTable + TS 实现后台管理商品分类(最新教程附源码)

Springboot3 MyBatis-Plus MySql Uniapp 商品加入购物车功能实现(针对上一篇sku) 1、效果展示2、数据库设计3、后端源码3.1 application.yml 方便 AliOssUtil.java 读取3.2 model 层3.2.1 BaseEntity3.2.1 GoodsType3.2.3 GoodsTypeSonVo3.3 Controll…

24 Vue3之集成TailwindCSS

Tailwind CSS Tailwind CSS是一个由js编写的CSS 框架 他是基于postCss 去解析的 官网地址Tailwind CSS 中文文档 - Tailwind CSS - 只需书写 HTML 代码,无需书写 CSS,即可快速构建美观的网站。 | TailwindCSS中文文档 | TailwindCSS中文网 对于PostCSS…

使用root账号ssh登录虚拟机ubuntu

在C:\Users\Administrator\.ssh目录下的config中,添加ubuntu会在根目录中,建立一个root文件夹。在该文件夹中建一个.ssh目录。像免密登录ubuntu设置中,把公钥考进去。在vscode中打开文件夹中选择要打开的文件夹,就可以不需要在ubu…

CentOS7 离线部署docker和docker-compose环境

一、Docker 离线安装 1. 下载docker tar.gz包 下载地址: Index of linux/static/stable/x86_64/ 本文选择版本:23.0.6 2.创建docker.service文件 vi docker.service文件内容如下: [Unit] DescriptionDocker Application Container Engi…

【成神之路】Ambari实战-014-代码生命周期-metainfo-cardinality详解

1.Redis 集群 metainfo.xml 示例 <?xml version"1.0"?> <metainfo><schemaVersion>2.0</schemaVersion><services><service><!-- Redis 集群服务的基本信息 --><name>REDIS</name><displayName>Redi…

Redis的基础认识与在ubuntu上的安装教程

来自Redis的自我介绍 我是Redis&#xff0c;一个中间件&#xff0c;职责是把数据存储在内存上&#xff0c;因此可以作为数据库、缓存、消息队列等场景使用。由于可以把数据存储在内存上&#xff0c;因此江湖人称快枪手 1.redis的功能特性 &#xff08;1&#xff09;数据在内存…

制造企业各部门如何参与生产成本控制与管理?

​国内制造业的分量可不轻&#xff0c;从日常生活用品到高端工业设备&#xff0c;中国制造几乎涵盖了各个领域。 不过很多制造业企业在管理方面确实存在一些难题&#xff1a;成本控制不容易&#xff0c;产品质量并不稳定&#xff0c;生产周期也常常较长。 一、中国制造业生产管…

【ZYNQ 开发】填坑!双核数据采集系统LWIP TCP发送,运行一段时间不再发送且无法ping通的问题解决

问题描述 之所以说是填坑&#xff0c;是因为之前写了一篇关于这个双核数据采集系统的调试记录&#xff0c;问题的具体表现是系统会在运行一段时间后&#xff08;随机不定时&#xff0c;长了可能将近两小时&#xff0c;短则几分钟&#xff09;&#xff0c;突然间就不向电脑发送数…

《家庭无线网络覆盖项目》

家庭无线网络覆盖报项目 目录 家庭无线网络覆盖项目 家庭无线网络覆盖项目 一、项目概述 二、设备清单及报价 三、安装调试费用 四、总报价 五、服务承诺 家庭无线网络覆盖项目 客户姓名:[客户姓名] 联系方式:[电话号码] 家庭地址:[详细地址] 一、项目概述 为客户…

docker compose 容器编排

文章目录 1、docker compose简介2、下载与安装2.1、创建指定目录存储docker compose2.2、下载docker-compose并移动到上面的目录下2.3、给docker-compose文件赋予可执行权限2.4、查看docker compose的版本 3、入门案例&#xff08;使用docker compose部署redis&#xff09;3.1、…

RTE 大会报名丨AI 时代新基建:云边端架构和 AI Infra ,RTE2024 技术专场第二弹!

所有 AI Infra 都在探寻规格和性能的最佳平衡&#xff0c;如何构建高可用的云边端协同架构&#xff1f; 语音 AI 实现 human-like 的最后一步是什么&#xff1f; AI 视频的爆炸增长&#xff0c;给新一代编解码技术提出了什么新挑战&#xff1f; 当大模型进化到实时多模态&am…

算力共享系统中数据平面和控制平面

目录 算力共享系统中数据平面和控制平面 数据平面 控制平面 算力共享系统举例 控制流程和业务流程,在算力共享系统中举例说明 控制流程 业务流程 算力共享系统中数据平面和控制平面 在算力共享系统中,数据平面和控制平面是两个关键组成部分,它们各自承担着不同的角色…

3-2 AUTOSAR RTE对Runnable的作用

返回总目录->返回总目录<- 一、前言 通过RTE给runnable提供触发事件。 runnable是可以被触发的,但是需要通过RTE来实现这个触发和调用runnable通过RTE给runnable提供所需资源。 RTE将runnable需要的一些资源通过接口传输给它(Port的实现)将BSW和SWC做隔绝。 因此OS和r…

2024/10/1 408大题专训之磁盘管理

2021&#xff1a; 2019&#xff1a; 2010&#xff1a;

【C语言】动态内存管理:malloc、calloc、realloc、free

本篇介绍一下C语言中的malloc/calloc/realloc。 使用这些函数需要包含头文件<stdlib.h>。malloc/calloc/realloc申请的空间都是 堆区的。 1.malloc和free 1.1 malloc C语言提供了一个动态内存开辟的函数malloc&#xff0c;函数原型如下。 void* malloc(size_t size);…

【docker学习】Linux系统离线方式安装docker环境方法

centos7-linux安装docker(离线方式) 下载docker的安装文件 https://download.docker.com/linux/static/stable/x86_64/ 下载的是&#xff1a;docker-18.06.3-ce.tgz 这个压缩文件 将docker-18.06.3-ce.tgz文件上传到centos7-linux系统上&#xff0c;用ftp工具上传即可 解压…

移情别恋c++ ദ്ദി˶ー̀֊ー́ ) ——15.红黑树

1.红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制&#xff0c;红黑树确保没有一条路 径会比其他路径长出俩倍&#xff0c;…

【C++】类与对象(一)

「前言」 &#x1f308;个人主页&#xff1a; 代码探秘者 &#x1f308;C语言专栏&#xff1a;C语言 &#x1f308;C专栏&#xff1a; C &#x1f308;喜欢的诗句:天行健,君子以自强不息. 目录 [一、面向过程和面向对象初步认识][Link 2] 二、类的引入 三、类的定义 四、类…

李宏毅机器学习2022-HW8-Anomaly Detection

文章目录 TaskBaselineReportQuestion2 Code Link Task 异常检测Anomaly Detection 将data经过Encoder&#xff0c;在经过Decoder&#xff0c;根据输入和输出的差距来判断异常图像。training data是100000张人脸照片&#xff0c;testing data有大约10000张跟training data相同…