YOLOv11尝鲜测试五分钟极简配置

ultralytics团队在最近又推出了YOLOv11,不知道在有生之年能不能看到YOLOv100呢哈哈。
根据官方文档,在 Python>=3.8并且PyTorch>=1.8的环境下即可安装YOLOv11,因此之前YOLOv8的环境是可以直接用的。
安装YOLOv11:

pip install ultralytics

命令行测试:

yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'

或者

yolo predict model=yolo11n.pt source='=bus.jpg'

得到结果:

Ultralytics 8.3.1 🚀 Python-3.9.19 torch-1.8.0+cu111 CUDA:0 (NVIDIA GeForce RTX 3070 Laptop GPU, 8192MiB)
YOLO11n summary (fused): 238 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPsimage 1/1 D:\document\VScode_workspace\ultralytics-8.3.1\bus.jpg: 640x480 4 persons, 1 bus, 0.0ms
Speed: 11.5ms preprocess, 0.0ms inference, 0.0ms postprocess per image at shape (1, 3, 640, 480)
Results saved to runs\detect\predict2
💡 Learn more at https://docs.ultralytics.com/modes/predict
VS Code: view Ultralytics VS Code Extension ⚡ at https://docs.ultralytics.com/integrations/vscode

python脚本测试:

from ultralytics import YOLO# Load a model
model = YOLO("yolo11n.pt")# Train the model
train_results = model.train(data="coco8.yaml",  # path to dataset YAMLepochs=100,  # number of training epochsimgsz=640,  # training image sizedevice="cpu",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)# Evaluate model performance on the validation set
metrics = model.val()# Perform object detection on an image
results = model("zidane.jpg")
results[0].show()# Export the model to ONNX format
path = model.export(format="onnx")  # return path to exported model

测试结果如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/436733.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

yum使用阿里云的镜像源报错 Failed connect to mirrors.aliyuncs.com:80; Connection refused“

报错:Failed connect to mirrors.aliyuncs.com:80; Connection refused",如果单独只是这个报错的话,那么原因是由于非阿里云ECS用户无法解析主机“mirrors.cloud.aliyuncs.com”。如果不单单只是这个报错另外还有其它报错请参考我其它文…

Redis 五大基本数据类型及其应用场景进阶(缓存预热、雪崩 、穿透 、击穿)

Redis 数据类型及其应用场景 Redis 是什么? Redis是一个使用C语言编写的高性能的基于内存的非关系型数据库,基于Key/Value结构存储数据,通常用来 缓解高并发场景下对某一资源的频繁请求 ,减轻数据库的压力。它支持多种数据类型,如字符串、…

YOLOv11改进策略【损失函数篇】| Shape-IoU:考虑边界框形状和尺度的更精确度量

一、本文介绍 本文记录的是改进YOLOv11的损失函数,将其替换成Shape-IoU。现有边界框回归方法通常考虑真实GT(Ground Truth)框与预测框之间的几何关系,通过边界框的相对位置和形状计算损失,但忽略了边界框本身的形状和…

IDEA几大常用AI插件

文章目录 前言列表GPT中文版TalkXBito AIIDEA自带的AI 前言 最近AI、GPT特别火,IDEA里面又有一堆插件支持GPT,所以做个专题比较一下各个GPT插件 列表 先看idea的plugins里支持哪些,搜索“GPT”之后得到的,我用下来感觉第一第二和…

[网络]抓包工具介绍 tcpdump

一、tcpdump tcpdump是一款基于命令行的网络抓包工具,可以捕获并分析传输到和从网络接口流入和流出的数据包。 1.1 安装 tcpdump 通常已经预装在大多数 Linux 发行版中。如果没有安装,可以使用包管理器 进行安装。例如 Ubuntu,可以使用以下…

【AI】深度学习的数学--核心公式

1 梯度下降 f ( x Δ x , y Δ y ) ≃ f ( x , y ) ∂ f ( x , y ) ∂ x Δ x ∂ f ( x , y ) ∂ y Δ y f(x\Delta x,y\Delta y) \simeq f(x,y)\frac{\partial f(x,y)}{\partial x}\Delta x\frac{\partial f(x,y)}{\partial y}\Delta y f(xΔx,yΔy)≃f(x,y)∂x∂f(x,y)​…

动手学深度学习(李沐)PyTorch 第 3 章 线性神经网络

3.1 线性回归 线性回归是对n维输入的加权,外加偏差 线性回归可以看作是单层神经网络 回归问题中最常用的损失函数是平方误差函数。 平方误差可以定义为以下公式: 常数1/2不会带来本质的差别,但这样在形式上稍微简单一些 (因为当…

叶绿素透射反射率与波长

本文在分析巢湖水体反射光谱特征的基础上,通过对光谱反射率与叶绿素a 的浓度之间的关系进行分析研究,结果表明,单波段光谱反射率与叶绿素a浓度的相关系数较小,不宜用于估算叶绿素a浓度.光谱反射率比值RFo5.m/Rss.nm.和 690nm反射率的一阶微分均与叶绿素a浓度有较好的…

idea2023-快速搭建一个本地tomcat的javaWeb项目(从0到1保姆教学)

前言 如何在新版idea中搭建一个javaWeb项目,并且应用在物理的tomcat中,本文将进行从零到一,完成搭建步骤,以及相关注意事项的讲解。 为什么需要配置tomcat? 我们开发的javaWeb项目,最后都需要打包部署到真正…

C++基础---类和对象(上)

1.类的定义 C程序设计允许程序员使用类(class)定义特定程序中的数据类型。这些数据类型的实例被称为对象 ,这些实例可以包含程序员定义的成员变量、常量、成员函数,以及重载的运算符。语法上,类似C中结构体&#xff0…

【网络篇】计算机网络基础知识详述(1)(笔记)

目录 一、因特网基础认识 1. 初识因特网 2. 网络服务 3. 网络协议 4. 网络边缘 5. 物理链路 (1)双绞铜线 (2)同轴电缆 (3)光纤 6. 网络的网络(因特网) 二、网络核心 1. …

unity_Occlusion_Culling遮挡剔除学习

unity_Occlusion_Culling遮挡剔除学习 文档: https://docs.unity.cn/cn/2019.4/Manual/occlusion-culling-getting-started.html没彻底搞明白,但是会用,虽然也不熟练 设置遮挡剔除 打开遮挡剔除面板 设置场景物体。设置为静态 设置场景 烘…

机器学习笔记(李宏毅老师2021/2022课程)【更新中】

目录 前言 课程预览 第一讲 机器学习基本概念 前言 本文主要记录在听李宏毅老师的课时对应做的课堂笔记 课程: (强推)李宏毅2021/2022春机器学习课程_哔哩哔哩_bilibili 课程预览 机器学习找函数 (找一个人类写不出来的复杂函数) 课程侧…

如何测试网络质量?

如何测试网络质量? 通过百度网盘分享的文件:winMTR 链接:https://pan.baidu.com/s/1Zfw4jciNhng35nfwBlF75Q 提取码:6622 –来自百度网盘超级会员V2的分享 下载WINMTR工具,在启动处输入www.baidu.com 判断方法&…

借助spring的IOC能力消除条件判断

shigen坚持更新文章的博客写手,记录成长,分享认知,留住感动。个人IP:shigen 在前边讲到了如何借助HashMap、枚举类、switch-case消除条件判断,这里讲到我们最常见的用spring的IOC能力来消除代码中的逻辑判断。其实大部…

2.点位管理开发(续)及设计思路——帝可得后台管理系统

目录 前言一、页面原型二、修改1、页面展示2、新增 3 、总结思路 前言 提示&#xff1a;本篇继续点位管理的改造 一、页面原型 页面展示新增 二、修改 1、页面展示 页面修改&#xff1a;修改标签换行、顺序顺序、地址过长时换行问题&#xff1b; <el-table v-loading…

JVM(HotSpot):字符串常量池(StringTable)

文章目录 一、内存结构图二、案例讲解三、总结 一、内存结构图 JDK1.6 JDK1.8 我们发现&#xff0c;StringTable移入了Heap里面。所以&#xff0c;应该想到&#xff0c;StringTable将受到GC管理。 其实&#xff0c;1.6中&#xff0c;在方法区中的时候&#xff0c;也是受GC管…

工单管理系统功能解析,企业运营效率提升利器

工单管理系统如ZohoDesk提供工单生成分配、跟踪、数据分析、客户服务管理及移动兼容等功能&#xff0c;提升效率、增强服务、便于监管和降低成本&#xff0c;是现代企业信息化建设的重要部分。 一. 工单管理系统一般有哪些功能 1. 工单生成与分配 工单管理系统的基础功能是创…

19 vue3之自定义指令Directive按钮鉴权

directive-自定义指令&#xff08;属于破坏性更新&#xff09; Vue中有v-if,v-for,v-bind&#xff0c;v-show,v-model 等等一系列方便快捷的指令 今天一起来了解一下vue里提供的自定义指令 Vue3指令的钩子函数 created 元素初始化的时候beforeMount 指令绑定到元素后调用 只…

Java增强for循环遍历集合删除指定值不安全问题

在这里因为remove方法有两种参数&#xff0c;一种是对象&#xff08;删除此元素&#xff09;&#xff0c;一种是Integer &#xff08;删除此下标对应的元素&#xff09;。恰好我对象类型就是Integer&#xff0c;所以或默认为删除下标对应元素&#xff0c;造成下标越界不安全。可…