stm32四足机器人(标准库)

项目技术要求

PWM波形的学习

参考文章stm32 TIM输出比较(PWM驱动LED呼吸灯&&PWM驱动舵机&&PWM驱动直流电机)_ttl pwm 驱动激光头区别-CSDN博客

舵机的学习 

参考文章

stm32 TIM输出比较(PWM驱动LED呼吸灯&&PWM驱动舵机&&PWM驱动直流电机)_ttl pwm 驱动激光头区别-CSDN博客

 蓝牙的学习

参考文章

stm32 USART串口(串口发送&串口发送+接收)_stm32串口实现接收和发送-CSDN博客

项目材料

降压模块+2节14500 3.7v电池+芯片拓展版+HC-06蓝牙模块+stm32f103c8t6+8个舵机+3D打印机器人骨架

项目结构图

技术问题

PWM初始化

(1)是否可以同时开启多个TIM时钟

1.独立配置:你可以对多个定时器(如 TIM2、TIM3、TIM4 等)分别调用 TIM_InternalClockConfig() 函数,例如:

TIM_InternalClockConfig(TIM2);
TIM_InternalClockConfig(TIM3);

2.相互独立:每个定时器都是独立工作的,因此可以同时开启多个定时器的内部时钟配置。每个定时器的状态和配置不会互相干扰。

3.资源限制:需要注意的是,虽然可以同时开启多个定时器,但要确保你的 MCU 有足够的资源(如定时器数量、计数器和中断处理能力等)。

4.使用场景:在某些应用场景中,你可能会用到多个定时器来实现不同的功能,比如定时器1用于PWM输出,定时器2用于延时,定时器3用于事件计数等。

5.总结:可以同时开启多个定时器的内部时钟配置,只需确保每个定时器都被正确初始化和配置即可。

(2)TIM使能问题

使用定时器(TIM)时,确保其正确使能是非常重要的。确保正确配置和使能 TIM 是保证 STM32 定时器正常工作的关键。

(3)捕获通道的正确开启

由于本项目需要开启所有的捕获通道,要保证所有的通道的开启

输入捕获通道CCR的正确的写入

(4)四足机器人步态

代码书写

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Servo.h"
#include "Serial.h"
uint8_t RxData;
uint8_t Middle;
float Angle;
const uint16_t RunAdvance[6][8]={{110,150,100,40,130,40,50,50},{45,100,100,40,130,40,50,50},{130,150,160,40,110,40,70,50},
{60,150,140,40,70,40,100,50},{60,150,140,40,120,80,100,50},{80,150,170,40,80,0,50,50}};
const uint8_t StartStates[]={60,145,140,30,100,40,70,60};	
const uint16_t HelloStates[2][8]={{60,60,140,20,130,30,70,40},{60,130,140,20,130,30,70,40}};
const uint16_t HapplyStates[2][8]={{60,90,140,80,100,80,70,10},{110,90,90,80,70,80,100,10}};
int main(void)
{  Servo_Init_Right();Servo_Init_Left();Serial_Init();	while (1){if (Serial_GetRxFlag() == 1)			//检查串口接收数据的标志位{RxData = Serial_GetRxData();		//获取串口接收的数据Serial_SendByte(RxData);if(RxData==0x34){for(int i=0;i<6;i++){Servo_SetAngle1_Left(RunAdvance[i][0]);		 Servo_SetAngle2_Left(RunAdvance[i][1]);Servo_SetAngle3_Left(RunAdvance[i][2]);Servo_SetAngle4_Left(RunAdvance[i][3]);Servo_SetAngle1_Right(RunAdvance[i][4]);Servo_SetAngle2_Right(RunAdvance[i][5]);Servo_SetAngle3_Right(RunAdvance[i][6]);Servo_SetAngle4_Right(RunAdvance[i][7]);Delay_ms(250);}}if(RxData==0x35){Servo_SetAngle1_Left(StartStates[0]);		 Servo_SetAngle2_Left(StartStates[1]);Servo_SetAngle3_Left(StartStates[2]);Servo_SetAngle4_Left(StartStates[3]);Servo_SetAngle1_Right(StartStates[4]);Servo_SetAngle2_Right(StartStates[5]);Servo_SetAngle3_Right(StartStates[6]);Servo_SetAngle4_Right(StartStates[7]);}if(RxData==0x36){for(int i=0;i<2;i++){Servo_SetAngle1_Left(HelloStates[i][0]);		 Servo_SetAngle2_Left(HelloStates[i][1]);Servo_SetAngle3_Left(HelloStates[i][2]);Servo_SetAngle4_Left(HelloStates[i][3]);Servo_SetAngle1_Right(HelloStates[i][4]);Servo_SetAngle2_Right(HelloStates[i][5]);Servo_SetAngle3_Right(HelloStates[i][6]);Servo_SetAngle4_Right(HelloStates[i][7]);Delay_ms(250);}}if(RxData==0x37){for(int i=0;i<2;i++){Servo_SetAngle1_Left(HapplyStates[i][0]);		 Servo_SetAngle2_Left(HapplyStates[i][1]);Servo_SetAngle3_Left(HapplyStates[i][2]);Servo_SetAngle4_Left(HapplyStates[i][3]);Servo_SetAngle1_Right(HapplyStates[i][4]);Servo_SetAngle2_Right(HapplyStates[i][5]);Servo_SetAngle3_Right(HapplyStates[i][6]);Servo_SetAngle4_Right(HapplyStates[i][7]);Delay_ms(250);}}}}
}

PWM 

PWM.c

#include "stm32f10x.h"                  // Device headervoid PWM_Init_Left(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 |GPIO_Pin_0|GPIO_Pin_2 |GPIO_Pin_3;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA1引脚初始化为复用推挽输出	//受外设控制的引脚,均需要配置为复用模式/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 20000 - 1;				//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量TIM_OCStructInit(&TIM_OCInitStructure);                         //结构体初始化,若结构体没有完整赋值//则最好执行此函数,给结构体所有成员都赋一个默认值//避免结构体初值不确定的问题TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值TIM_OC1Init(TIM2, &TIM_OCInitStructure);TIM_OC2Init(TIM2, &TIM_OCInitStructure);TIM_OC3Init(TIM2, &TIM_OCInitStructure);TIM_OC4Init(TIM2, &TIM_OCInitStructure);TIM_Cmd(TIM2, ENABLE);}void PWM_Init_Right(void)
{RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 |GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_0 |GPIO_Pin_1;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStruct);TIM_InternalClockConfig(TIM3);TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 20000 - 1;				//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);TIM_OCInitTypeDef TIM_OCInitStructure;							TIM_OCStructInit(&TIM_OCInitStructure);      TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值TIM_OC1Init(TIM3, &TIM_OCInitStructure);TIM_OC2Init(TIM3, &TIM_OCInitStructure);TIM_OC3Init(TIM3, &TIM_OCInitStructure);TIM_OC4Init(TIM3, &TIM_OCInitStructure);TIM_Cmd(TIM3, ENABLE);}void PWM_SetCompare2_Left(uint16_t Compare)
{TIM_SetCompare2(TIM2, Compare);		//设置CCR2的值
}
void PWM_SetCompare1_Left(uint16_t Compare)
{TIM_SetCompare1(TIM2, Compare);		//设置CCR1的值
}
void PWM_SetCompare3_Left(uint16_t Compare)
{TIM_SetCompare3(TIM2, Compare);		//设置CCR1的值
}
void PWM_SetCompare4_Left(uint16_t Compare)
{TIM_SetCompare4(TIM2, Compare);		//设置CCR1的值
}void PWM_SetCompare2_Right(uint16_t Compare)
{TIM_SetCompare2(TIM3, Compare);		//设置CCR2的值
}
void PWM_SetCompare1_Right(uint16_t Compare)
{TIM_SetCompare1(TIM3, Compare);		//设置CCR1的值
}
void PWM_SetCompare3_Right(uint16_t Compare)
{TIM_SetCompare3(TIM3, Compare);		//设置CCR1的值
}
void PWM_SetCompare4_Right(uint16_t Compare)
{TIM_SetCompare4(TIM3, Compare);		//设置CCR1的值
}

PWM.h

#ifndef __PWM_H
#define __PWM_Hvoid PWM_Init_Left(void);
void PWM_Init_Right(void);
void PWM_SetCompare2_Left(uint16_t Compare);
void PWM_SetCompare1_Left(uint16_t Compare);
void PWM_SetCompare3_Left(uint16_t Compare);
void PWM_SetCompare4_Left(uint16_t Compare);void PWM_SetCompare2_Right(uint16_t Compare);
void PWM_SetCompare1_Right(uint16_t Compare);
void PWM_SetCompare3_Right(uint16_t Compare);
void PWM_SetCompare4_Right(uint16_t Compare);#endif

Servo

Servo.h

#ifndef __SERVO_H
#define __SERVO_Hvoid Servo_Init_Left(void);
void Servo_Init_Right(void);
void Servo_SetAngle1_Left(float Angle);
void Servo_SetAngle2_Left(float Angle);
void Servo_SetAngle3_Left(float Angle);
void Servo_SetAngle4_Left(float Angle);void Servo_SetAngle1_Right(float Angle);
void Servo_SetAngle2_Right(float Angle);
void Servo_SetAngle3_Right(float Angle);
void Servo_SetAngle4_Right(float Angle);#endif

Servo.c 

#include "stm32f10x.h"                  // Device header
#include "PWM.h"/*** 函    数:舵机初始化* 参    数:无* 返 回 值:无*/
void Servo_Init_Left(void)
{PWM_Init_Left();									//初始化舵机的底层PWM}
void Servo_Init_Right(void)
{PWM_Init_Right();									//初始化舵机的底层PWM}void Servo_SetAngle2_Left(float Angle)
{PWM_SetCompare2_Left(Angle / 180 * 2000 + 500);	//设置占空比//将角度线性变换,对应到舵机要求的占空比范围上
}void Servo_SetAngle1_Left(float Angle)
{PWM_SetCompare1_Left(Angle / 180 * 2000 + 500);	//设置占空比//将角度线性变换,对应到舵机要求的占空比范围上
}
void Servo_SetAngle3_Left(float Angle)
{PWM_SetCompare3_Left(Angle / 180 * 2000 + 500);	//设置占空比//将角度线性变换,对应到舵机要求的占空比范围上
}
void Servo_SetAngle4_Left(float Angle)
{PWM_SetCompare4_Left(Angle / 180 * 2000 + 500);	//设置占空比//将角度线性变换,对应到舵机要求的占空比范围上
}void Servo_SetAngle2_Right(float Angle)
{PWM_SetCompare2_Right(Angle / 180 * 2000 + 500);	//设置占空比//将角度线性变换,对应到舵机要求的占空比范围上
}void Servo_SetAngle1_Right(float Angle)
{PWM_SetCompare1_Right(Angle / 180 * 2000 + 500);	//设置占空比//将角度线性变换,对应到舵机要求的占空比范围上
}
void Servo_SetAngle3_Right(float Angle)
{PWM_SetCompare3_Right(Angle / 180 * 2000 + 500);	//设置占空比//将角度线性变换,对应到舵机要求的占空比范围上
}
void Servo_SetAngle4_Right(float Angle)
{PWM_SetCompare4_Right(Angle / 180 * 2000 + 500);	//设置占空比//将角度线性变换,对应到舵机要求的占空比范围上
}

Serial

Serial.c

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>
#include "Timer.h"uint8_t Serial_RxData;		//定义串口接收的数据变量
uint8_t Serial_RxFlag;		//定义串口接收的标志位变量
/*** 函    数:串口初始化* 参    数:无* 返 回 值:无*/
void Serial_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);	//开启USART1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA9引脚初始化为复用推挽输出GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA10引脚初始化为上拉输入/*USART初始化*/USART_InitTypeDef USART_InitStructure;					//定义结构体变量USART_InitStructure.USART_BaudRate = 9600;				//波特率USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;	//硬件流控制,不需要USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;	//模式,发送模式和接收模式均选择USART_InitStructure.USART_Parity = USART_Parity_No;		//奇偶校验,不需要USART_InitStructure.USART_StopBits = USART_StopBits_1;	//停止位,选择1位USART_InitStructure.USART_WordLength = USART_WordLength_8b;		//字长,选择8位USART_Init(USART1, &USART_InitStructure);				//将结构体变量交给USART_Init,配置USART1/*中断输出配置*/USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);			//开启串口接收数据的中断/*NVIC中断分组*/NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);			//配置NVIC为分组2/*NVIC配置*/NVIC_InitTypeDef NVIC_InitStructure;					//定义结构体变量NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;		//选择配置NVIC的USART1线NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//指定NVIC线路使能NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;		//指定NVIC线路的抢占优先级为1NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;		//指定NVIC线路的响应优先级为1NVIC_Init(&NVIC_InitStructure);							//将结构体变量交给NVIC_Init,配置NVIC外设/*USART使能*/USART_Cmd(USART1, ENABLE);								//使能USART1,串口开始运行
}/*** 函    数:串口发送一个字节* 参    数:Byte 要发送的一个字节* 返 回 值:无*/
void Serial_SendByte(uint8_t Byte)
{USART_SendData(USART1, Byte);		//将字节数据写入数据寄存器,写入后USART自动生成时序波形while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);	//等待发送完成/*下次写入数据寄存器会自动清除发送完成标志位,故此循环后,无需清除标志位*/
}/*** 函    数:串口发送一个数组* 参    数:Array 要发送数组的首地址* 参    数:Length 要发送数组的长度* 返 回 值:无*/
void Serial_SendArray(uint8_t *Array, uint16_t Length)
{uint16_t i;for (i = 0; i < Length; i ++)		//遍历数组{Serial_SendByte(Array[i]);		//依次调用Serial_SendByte发送每个字节数据}
}/*** 函    数:串口发送一个字符串* 参    数:String 要发送字符串的首地址* 返 回 值:无*/
void Serial_SendString(char *String)
{uint8_t i;for (i = 0; String[i] != '\0'; i ++)//遍历字符数组(字符串),遇到字符串结束标志位后停止{Serial_SendByte(String[i]);		//依次调用Serial_SendByte发送每个字节数据}
}/*** 函    数:次方函数(内部使用)* 返 回 值:返回值等于X的Y次方*/
uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{uint32_t Result = 1;	//设置结果初值为1while (Y --)			//执行Y次{Result *= X;		//将X累乘到结果}return Result;
}/*** 函    数:串口发送数字* 参    数:Number 要发送的数字,范围:0~4294967295* 参    数:Length 要发送数字的长度,范围:0~10* 返 回 值:无*/
void Serial_SendNumber(uint32_t Number, uint8_t Length)
{uint8_t i;for (i = 0; i < Length; i ++)		//根据数字长度遍历数字的每一位{Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');	//依次调用Serial_SendByte发送每位数字}
}/*** 函    数:使用printf需要重定向的底层函数* 参    数:保持原始格式即可,无需变动* 返 回 值:保持原始格式即可,无需变动*/
int fputc(int ch, FILE *f)
{Serial_SendByte(ch);			//将printf的底层重定向到自己的发送字节函数return ch;
}/*** 函    数:自己封装的prinf函数* 参    数:format 格式化字符串* 参    数:... 可变的参数列表* 返 回 值:无*/
void Serial_Printf(char *format, ...)
{char String[100];				//定义字符数组va_list arg;					//定义可变参数列表数据类型的变量argva_start(arg, format);			//从format开始,接收参数列表到arg变量vsprintf(String, format, arg);	//使用vsprintf打印格式化字符串和参数列表到字符数组中va_end(arg);					//结束变量argSerial_SendString(String);		//串口发送字符数组(字符串)
}/*** 函    数:获取串口接收标志位* 参    数:无* 返 回 值:串口接收标志位,范围:0~1,接收到数据后,标志位置1,读取后标志位自动清零*/
uint8_t Serial_GetRxFlag(void)
{if (Serial_RxFlag == 1)			//如果标志位为1{Serial_RxFlag = 0;return 1;					//则返回1,并自动清零标志位}return 0;						//如果标志位为0,则返回0
}/*** 函    数:获取串口接收的数据* 参    数:无* 返 回 值:接收的数据,范围:0~255*/
uint8_t Serial_GetRxData(void)
{return Serial_RxData;			//返回接收的数据变量
}/*** 函    数:USART1中断函数* 参    数:无* 返 回 值:无* 注意事项:此函数为中断函数,无需调用,中断触发后自动执行*           函数名为预留的指定名称,可以从启动文件复制*           请确保函数名正确,不能有任何差异,否则中断函数将不能进入*/
void USART1_IRQHandler(void)
{if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)		//判断是否是USART1的接收事件触发的中断{Serial_RxData = USART_ReceiveData(USART1);				//读取数据寄存器,存放在接收的数据变量Serial_RxFlag = 1;										//置接收标志位变量为1USART_ClearITPendingBit(USART1, USART_IT_RXNE);			//清除USART1的RXNE标志位//读取数据寄存器会自动清除此标志位//如果已经读取了数据寄存器,也可以不执行此代码}
}

Serial.h

#ifndef __SERIAL_H
#define __SERIAL_H#include <stdio.h>void Serial_Init(void);
void Serial_SendByte(uint8_t Byte);
void Serial_SendArray(uint8_t *Array, uint16_t Length);
void Serial_SendString(char *String);
void Serial_SendNumber(uint32_t Number, uint8_t Length);
void Serial_Printf(char *format, ...);uint8_t Serial_GetRxFlag(void);
uint8_t Serial_GetRxData(void);#endif

项目不足

没有写掉头逻辑,四足机器人走路存在一点问题,有时间就改进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/437738.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

发布:ultralytics-yolo-webui :Detect 目标检测 工具-先行版本 >> DataBall

通过webui 方式对ultralytics 的 detect 检测任务 进行&#xff1a; 1&#xff09;数据预处理&#xff0c;2&#xff09;模型训练&#xff0c;3&#xff09;模型推理。 本项目提供了 示例数据集&#xff0c;用 labelImage标注&#xff0c;标注文件为 xml 文件。 项目地址&…

css的背景background属性

CSS的background属性是一个简写属性&#xff0c;它允许你同时设置元素的多个背景相关的子属性。使用这个属性可以简化代码&#xff0c;使其更加清晰和易于维护。background属性可以设置不同的子属性。 background子属性 定义背景颜色 使用background-color属性 格式&#x…

【AI绘画】Midjourney进阶:景别详解

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AI绘画 | Midjourney 文章目录 &#x1f4af;前言&#x1f4af;为什么要学习景别景别的作用景别在Midjourney中的应用实例 &#x1f4af;大景别&#x1f4af;远景特点提示词书写技巧测试 &#x1f4af;全景特点提示词书写技巧测试…

三、数据链路层(下)

目录 3.6以太网 以太网的分类 Mac地址 以太网数据格式 3.7互联网 数据是如何传输的&#xff1f; 3.8以太网、局域网、互联网的区别 总结&#xff1a; 3.9 vlan基本概念与基本原理 Vlan实现 划分 VLAN 例题 3.10广域网及相关协议 ppp协议 PPP协议所满足的要求 P…

防sql注入的网站登录系统设计与实现

课程名称 网络安全 大作业名称 防sql注入的网站登录系统设计与实现 姓名 学号 班级 大 作 业 要 求 结合mysql数据库设计一个web登录页面密码需密文存放&#xff08;可以采用hash方式&#xff0c;建议用sha1或md5加盐&#xff09;采用服务器端的验证码&#…

C(十)for循环 --- 黑神话情景

前言&#xff1a; "踏过三界宝刹&#xff0c;阅过四洲繁华。笑过五蕴痴缠&#xff0c;舍过六根牵挂。怕什么欲念不休&#xff0c;怕什么浪迹天涯。步履不停&#xff0c;便是得救之法。" 国际惯例&#xff0c;开篇先喝碗鸡汤。 今天&#xff0c;杰哥写的 for 循环相…

笔记整理—linux进程部分(6)进程间通信、alarm和pause

两个进程间通信可能是任何两个进程间的通信&#xff08;IPC&#xff09;。同一个进程是在同一块地址空间中的&#xff0c;在不同的函数与文件以变量进程传递&#xff0c;也可通过形参传递。2个不同进程处于不同的地址空间&#xff0c;要互相通信有难度&#xff08;内存隔离的原…

【H2O2|全栈】关于CSS(9)CSS3扩充了哪些新鲜的东西?(二)

目录 CSS3入门 前言 准备工作 伪元素补充 :before :after 文本溢出属性 转换效果 预告和回顾 后话 CSS3入门 前言 本系列博客主要介绍CSS相关的知识点。 这一期主要介绍以下几个CSS3的知识点&#xff1a; 伪元素补充文本溢出属性转换 没有基础的朋友&#xff…

怎样过好国庆节

今天是2024年10月1号&#xff0c;国庆节&#xff0c;七天小长假&#xff0c;估计每个人都有自己的小计划。有想出去浪的&#xff0c;有想闭关修炼的&#xff0c;有想约会恋爱的&#xff0c;也有想回家看父母的&#xff0c;只要有事干&#xff0c;有想法&#xff0c;有行动&…

ArcGIS共享数据的最佳方法(不丢可视化、标注等各类显示信息一样带)

今天我们介绍一下ArcGIS数据共享的几个小妙招 我们时常要把数据发给对方&#xff0c;特别是很多新手朋友要将shp发给对方时只是发送了shp后缀的文件&#xff0c;却把shp的必要组成文件dbf、shx等等给落下了。 还有很多朋友给图层做好了符号化标注&#xff0c;但是数据一发给别…

源2.0全面适配百度PaddleNLP,大模型开发开箱即用

近日&#xff0c;源2.0开源大模型与百度PaddleNLP完成全面适配。用户通过PaddleNLP&#xff0c;可快速调用源2.0预训练大模型&#xff0c;使用源2.0在语义、数学、推理、代码、知识等方面的推理能力&#xff0c;也可以使用特定领域的数据集对源2.0 进行微调&#xff0c;训练出适…

【设计模式-中介者模式】

定义 中介者模式&#xff08;Mediator Pattern&#xff09;是一种行为设计模式&#xff0c;通过引入一个中介者对象&#xff0c;来降低多个对象之间的直接交互&#xff0c;从而减少它们之间的耦合度。中介者充当不同对象之间的协调者&#xff0c;使得对象之间的通信变得简单且…

IT新秀系列:Go语言的兴起

Go语言&#xff08;Golang&#xff09;由谷歌于2007年发起&#xff0c;并于2009年正式开源。它的诞生背景可以追溯到互联网技术的高速发展时期。那时&#xff0c;软件开发面临着多核计算、大规模并发处理、部署和维护效率低下等挑战。作为一种新型的编程语言&#xff0c;Go主要…

图解大模型计算加速系列:vLLM源码解析2,调度器策略(Scheduler)

在本系列对vLLM的介绍中&#xff0c;都会按照 “宏观&#xff08;图解&#xff09; -> 细节&#xff08;配合源码&#xff09;” 的方式&#xff0c;先理清vLLM在这里想做什么事&#xff0c;为什么要这么做&#xff0c;然后再一起来看各小块的代码实现。 【全文目录如下】 …

【ubuntu】【VirtualBox】VirtualBox无法加载USB移动设备的解决方法(支持U盘启动盘)

TOC 提示&#xff1a;测试可用 一、安装VirtualBox VirtualBox-7.1.2-164945-Win。 下载路径。 Download_Old_Builds_7_0 – Oracle VirtualBox 二、安装Oracle_VirtualBox_Extension_Pack-7.1.2 下载路径见上文。 三、安装增强功能 四、挂载USB 4.1 设置USB协议 4.2 挂…

AlmaLinux 9 安装mysql8.0.38

文件下载 https://cdn.mysql.com//Downloads/MySQL-8.0/mysql-8.0.39-linux-glibc2.12-x86_64.tar 选择合适系统版本 下载后解压 tar -xvf mysql-8.0.39-linux-glibc2.12-x86_64.tar解压后里面有三个文件夹 使用mysql-8.0.39-linux-glibc2.12-x86_64.tar.xz即可&#xff0c…

ubuntu 开启root

sudo passwd root#输入以下命令来给root账户设置密码 sudo passwd -u root#启用root账户 su - root#要登录root账户 root 开启远程访问&#xff1a; 小心不要改到这里了&#xff1a;sudo nano /etc/ssh/ssh_config 而是&#xff1a;/etc/ssh/sshd_config sudo nano /etc/ssh…

Qt Creator安卓环境配置【筑基篇】

1.前言 由于我的Qt Creator目前就先的14版本IDE老是存在各种莫名奇妙的bug&#xff0c;我都已经成为官方Qt Forum官方论坛的常客了。有一说一新版本的各种设置不小心误触是真的坑死人。不说了给我小主机配置安卓环境了。小主机系统版本window11-23H,Qt-Creator版本是13.01版本…

Python入门--判断语句

目录 1. 布尔类型和比较运算符 2. if语句的基本格式 3. if-else语句 4. if-elif-else语句 5. 判断语句的嵌套 6. 应用--猜数字游戏 进行逻辑判断&#xff0c;是生活中常见的行为。同样&#xff0c;在程序中&#xff0c;进行逻辑判断也是最为基础的功能。 1. 布尔类型和比…

yolov8/9/10模型在安全帽、安全衣检测中的应用【代码+数据集+python环境+GUI系统】

yolov8910模型安全帽、安全衣检测中的应用【代码数据集python环境GUI系统】 yolov8/9/10模型在安全帽、安全衣检测中的应用【代码数据集python环境GUI系统】 背景意义 安全帽和安全衣在工业生产、建筑施工等高风险作业环境中是保护工人免受意外伤害的重要装备。然而&#xff0…